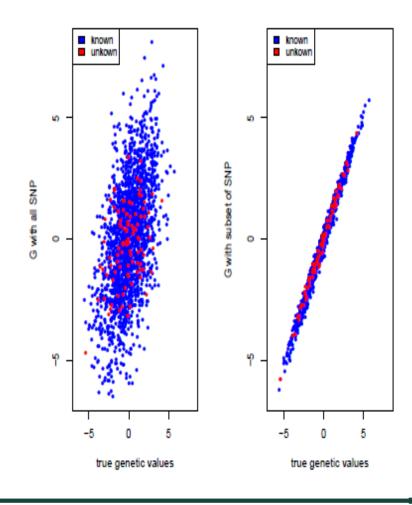


Feature selection for genomic prediction

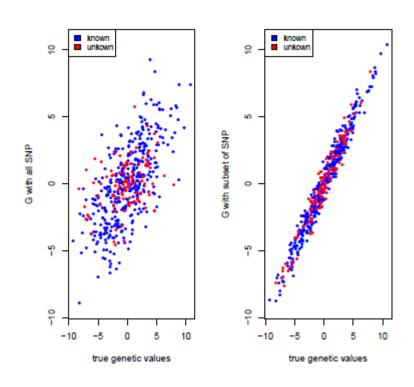
Cedric Gondro

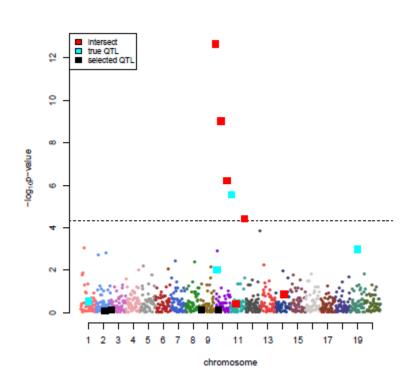
The big picture


- how well can we predict
 - effects of methods
 - effects of population
 - effects of architecture
- do we need to know the truth
- heritability X predictability
- prediction as feature selection

- In a perfect world we would know the true SNP associated to a trait or even better, the functional causal variants
- We would know the variants of large effect but also all the ones with small effects
- And we would use only them for making predictions...

Ideally...

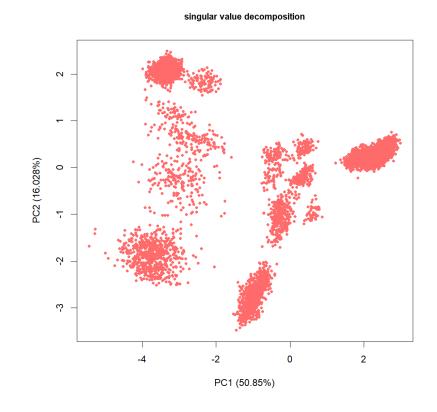


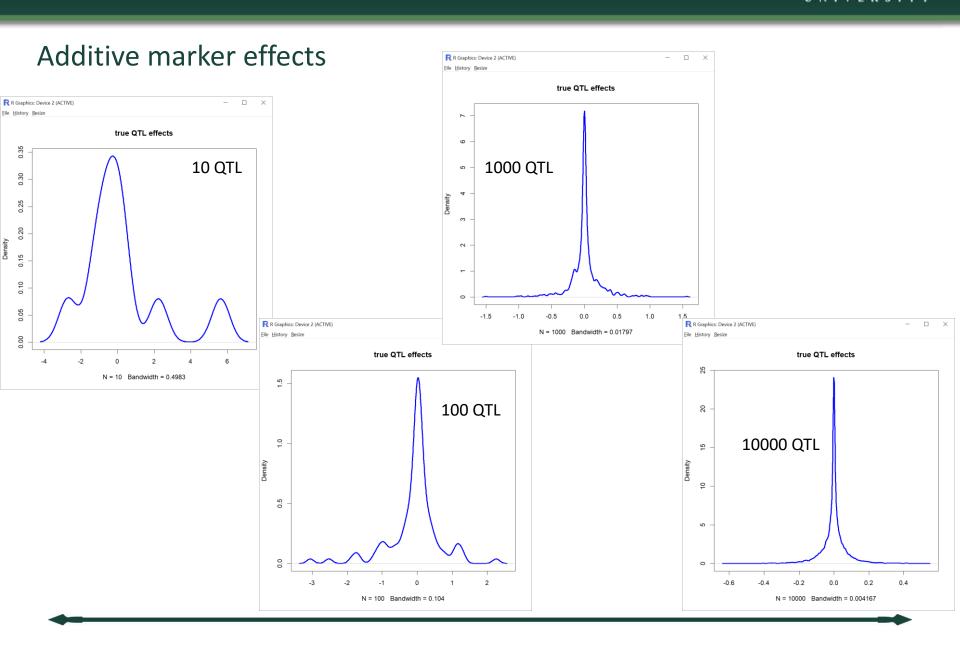


tBLUP

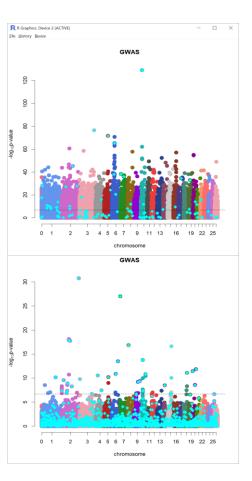
Use trait G instead of G trait relationship matrix - TRM

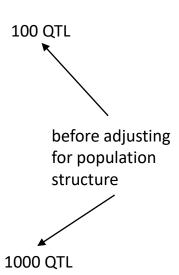
gBLUP using only functional markers

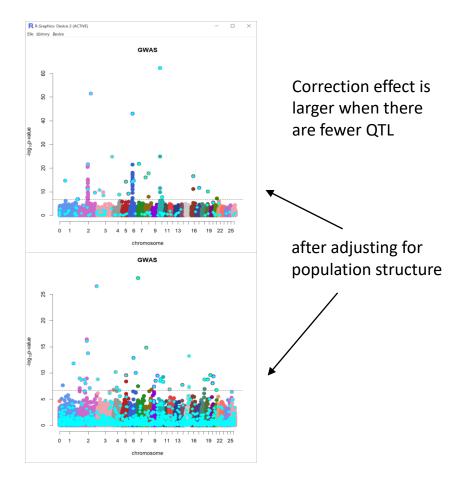


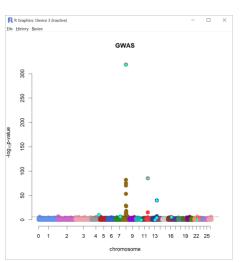


Backdrop... Some simulations

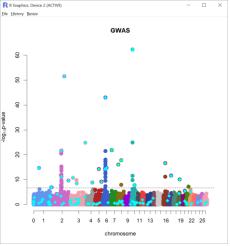

- 50k data
- 7539 animals
- multibreed
- simple additive model
- QTL included in data
- $h^2=0.4$, $V_a=50$

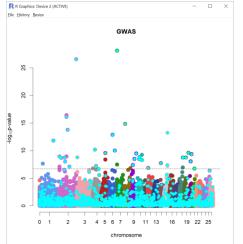


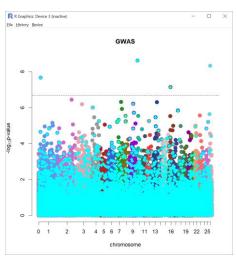




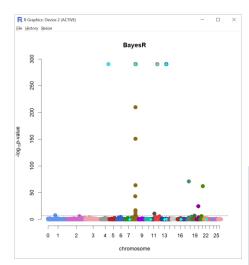
Simple GWAS

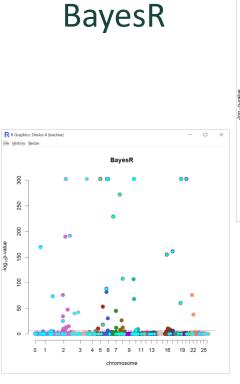


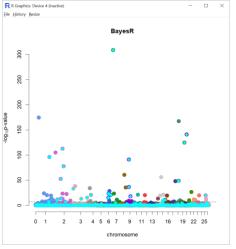


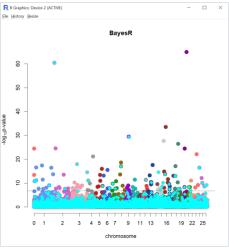


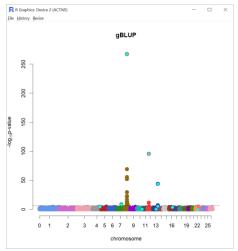
LD plays a large role overestimates regions

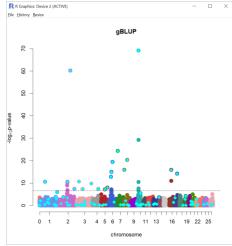

GWAS



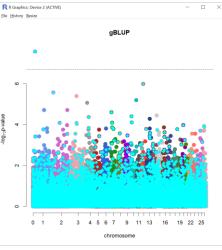



10 -> 100 -> 1000 -> 10000 QTL

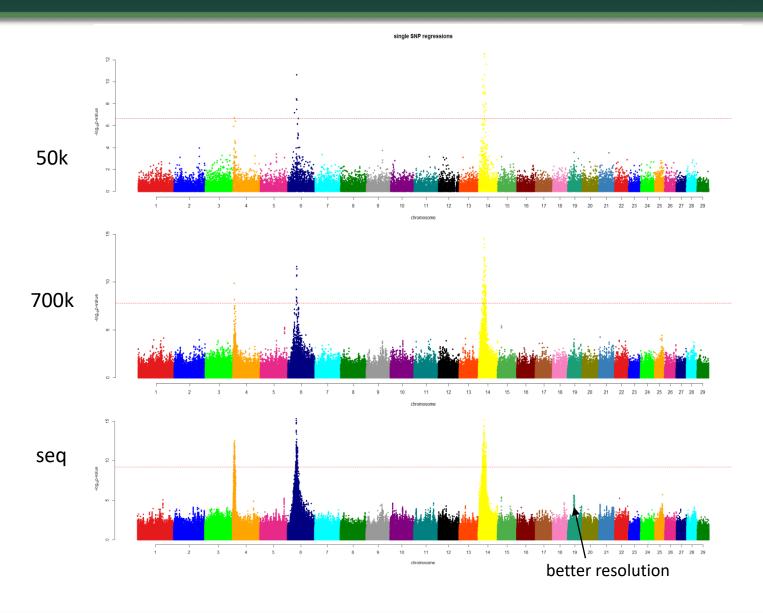

accounts better for LD still many false positives





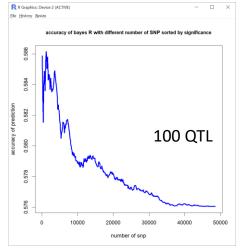

10 -> 100 -> 1000 -> 10000 QTL

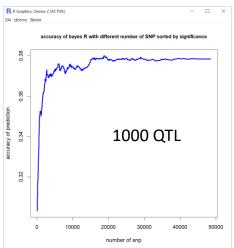
GBLUP

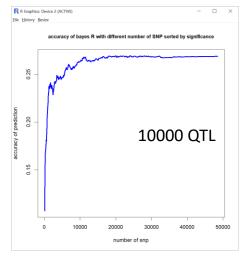


accounts well(ish) for LD less false positives more conservative

10 -> 100 -> 1000 -> 10000 QTL




GWAS and marker numbers – cattle data, h²=0.6



A first look at feature selection

With few QTL the estimates of true effects are more correct – the top subset is more predictive

Adding more SNP only adds noise and reduces prediction accuracy

But change in accuracy is still marginal

With many QTL the true effects are all wrong, basically approximates GBLUP

Needs to use all SNP to improve prediction accuracy

accuracy of prediction using only top SNP (1%, 5% and 10%) original – original effect estimates used directly for prediction new – effects reestimated with GBLUP and then used for prediction still need to re-test subsets with BayesR

method and	1	0	1	100		000	10	0000
number of SNP	new	original	new	original	new	original	new	original
gwas 485	0.597	0.478	0.535	0.387	0.460	0.358	0.252	0.241
gwas 2427	0.494	0.368	0.452	0.313	0.443	0.326	0.281	0.286
gwas 4854	0.468	0.333	0.446	0.275	0.412	0.304	0.316	0.288
gblup 485	0.508	0.502	0.499	0.455(0.477	0.428	0.260	0.237
gblup 2427	0.426	0.459	0.419	0.436	0.419	0.401	0.289	0.300
gblup 4854	0.398	0.431	0.416	0.442	0.378	0.383	0.288	0.301
bayesr 485	0.564	0.615	0.543	0.584	0.401	0.334	0.193	0.182
bayesr 2427	0.469	0.611	0.459	0.584	0.406	0.368	0.237	0.229
bayesr 4854	0.434	0.608	0.448	0.582	0.395	0.373	0.250	0.247

best

somehow we know the SNP and use them to estimate effects and predict

the magic full truth – QTL and real effects are known

or we have the global effects, somehow found the QTL and used the original effects with just the QTL

theoretical maximum accuracy: 0.632

accuracy w	ith true QTL	accuracy w	ith true
using GBLU	Р	QTL effects	5
1 0	0.659	10	0.659
100	0.633	100	0.643
1000	0.568	1000	0.634
10000	0.356	10000	0.629

SNP	GWAS	GBLUP	BAYESR
10	0.655	0.655	0.629
100	0.621	0.585	0.605
1000	0.501	0.540	0.366
10000	0.315	0.346	0.280

How does subsetting compare to using all SNP?

method and	10		1	00	1	000	10000	
number of SNP	new	original	new	original	new	original	new	original
gwas 485	0.597	0.478	0.535	0.387	0.460	0.358	0.252	0.241
gwas 2427	0.494	0.368	0.452	0.313	0.443	0.326	0.281	0.286
gwas 4854	0.468	0.333	0.446	0.275	0.412	0.304	0.316	0.288
gblup 485	0.508	0.502	0.499	0.455	0.477	0.428	0.260	0.237
gblup 2427	0.426	0.459	0.419	0.436.	0.419	0.401	0.289	0.300
gblup 4854	0.398	0.431	0.416	0.442	0.378	0.383	0.288	0.301
bayesr 485	0.564	0.615	0.543	÷0.584	0.401	0.334	0.193	0.182
bayesr 2427	0.469	0.611	0.459	0.584	0.406	0.368	0.237	0.229
bayesr 4854	0.434	0.608.	0.448	0.582	0.395	0.373	0.250	0.247

	all	SNP	top SNP			
SNP	GBLUP	BAYESR	GBLUP	BAYESR		
10	0.389	0.599	0.508	0.615		
100	0.441	0.576	0.499	. 0.584		
1000	0.347	0.378	0.477	0.406		
10000	0.311	0.269	0.301	0.250		

in but maximum of 4854 SNP used and there are 10000 QTL if top 20% (~10k) used then GBLUP accuracy = 0.319 original (or 0.306 with re-estimated effects)

▶ BayesR still lower at 0.264 original and 0.274 re-estimate

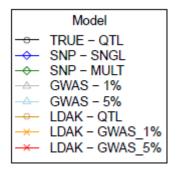
GWAS was already higher with 4854 SNP (0.316); 0.321 with top 20%

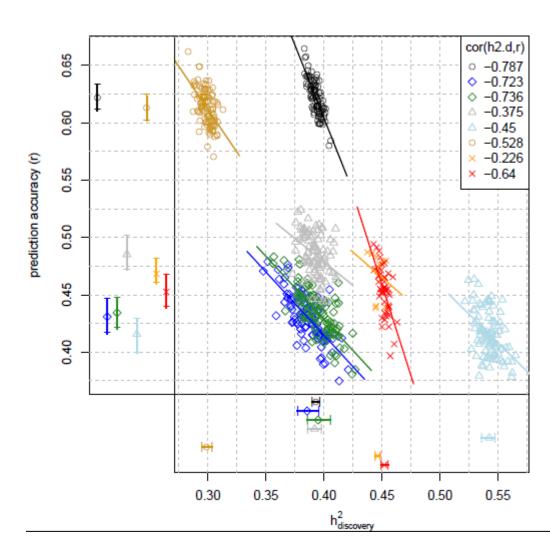
A case for feature selection

using only significant SNP (1% Bonferroni)

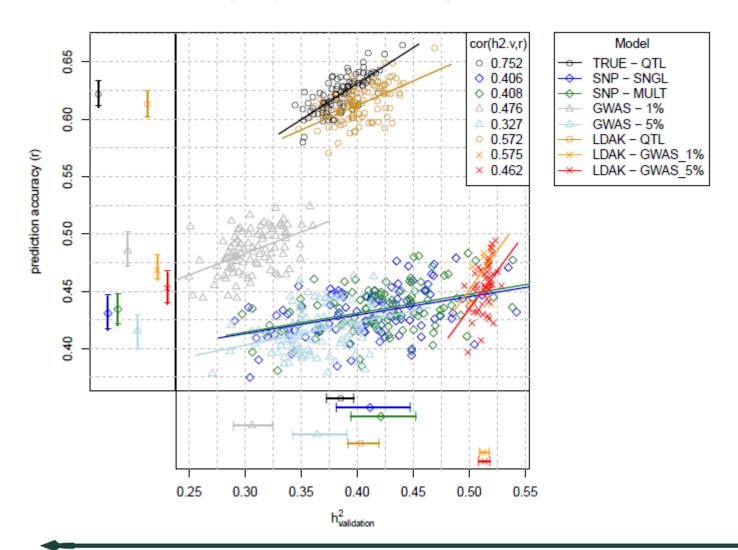
	10			100				1000		10000		
	SNP	new	original	SNP	new	original	SNP	new	original	SNP	new	original
GWAS	39	0.648	0.517	65	0.363	0.411	45	0.211	0.379	4	0.127	0.125
GBLUP	26	0.648	0.541	29	0.589	0.522	26	0.414	0.391	1	NA	0.05
BAYESR	21	0.648	0.613	48	0.603	0.582	84	0.371	0.295	113	0.147	0.118

	all	SNP	top SNP
SNP	GBLUP	BAYESR	best in class
10	0.389	0.599	0.615
100	0.441	0.576	0.584
1000	0.347	0.378	0.477
10000	0.311	0.269	0.316

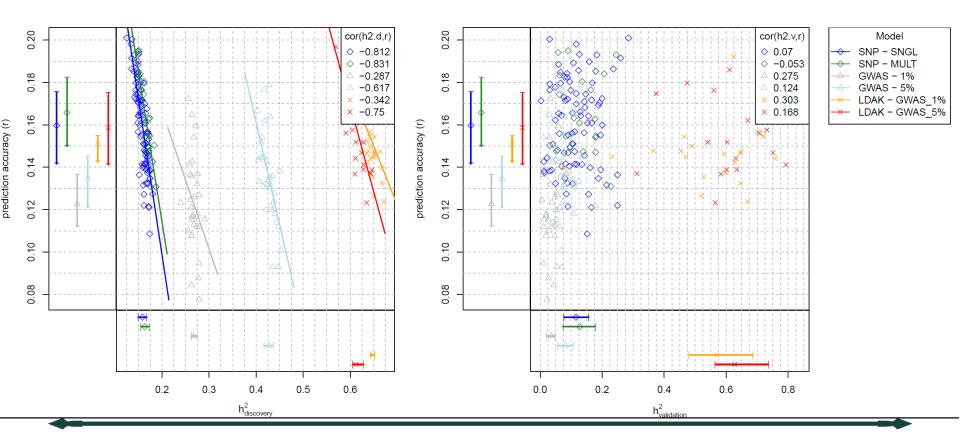

accuracy with true QTL using GBLUP
10 0.659
100 0.633
1000 0.568
10000 0.356


X

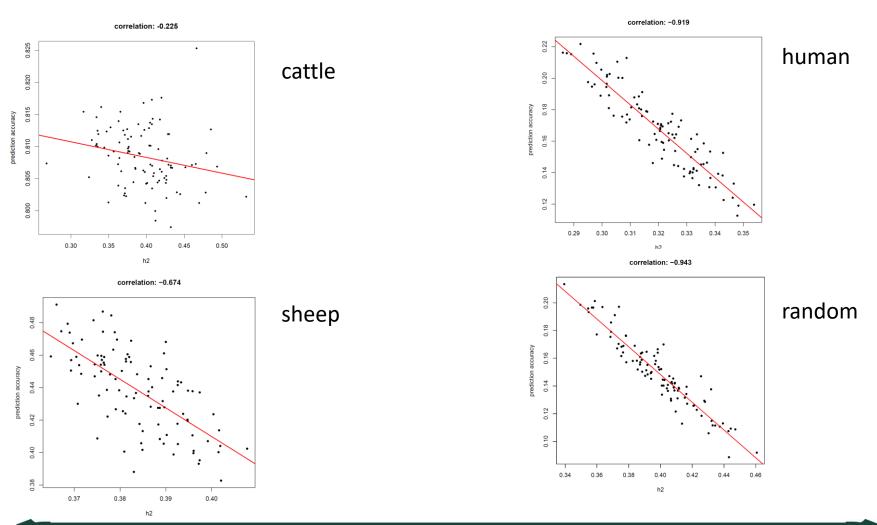
theoretical maximum accuracy: 0.632



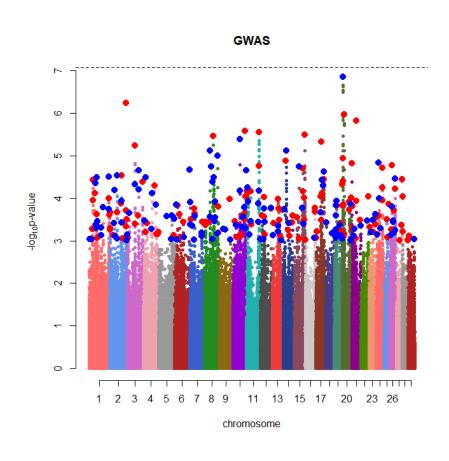
Heritability x predictability



Heritability x predictability

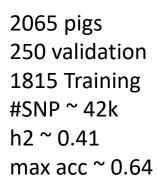


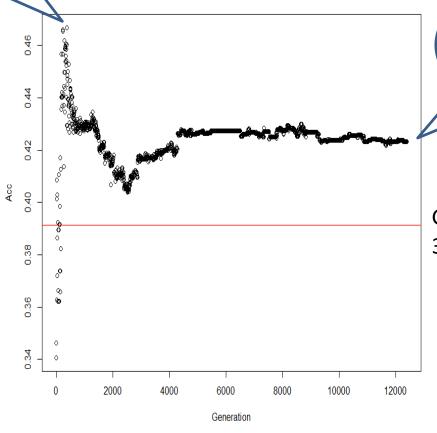
Real data



Heritability x predictability – population structures

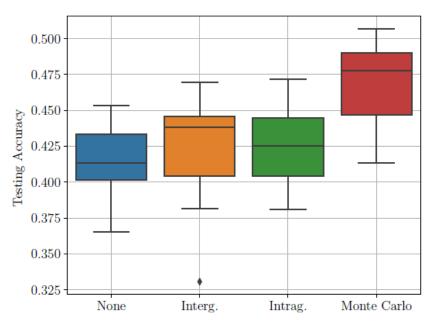
Al optimization – GWAS + LD + local search

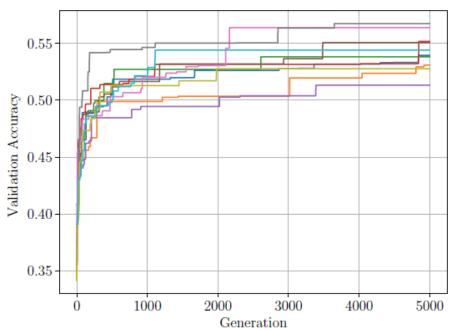

Accuracy of prediction with
 588k SNP = 0.17


 Accuracy of prediction with 218 informative SNP = 0.24

Overfitting problem

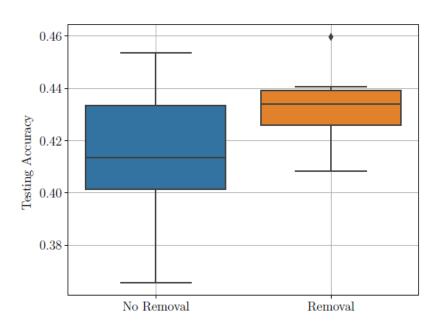
DE prediction accuracy

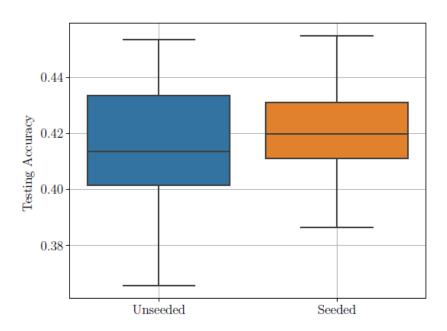


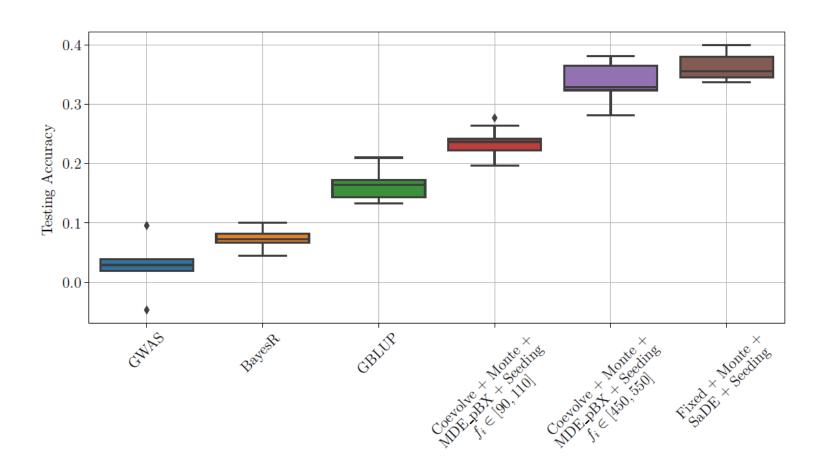


Accuracy after 12,500 generations: 42.3% using 690 SNP

GBLUP accuracy 39.1%


Avoid overfitting




Improving prediction

Comparative performance – real data

Summary

- Sub-setting always better but no clear winning method
- Removing noise increases accuracy
- Heritability is not a good measure of predictability within a trait
- Not even QTL knowledge is enough if effects are small and many
- bayesR better with more discrete genetic architectures
- GBLUP better with polygenic architectures

How well can we separate signal from noise?

nu	ım QTL	10			100			1000			10000		
m	ethod	GWAS	GBLUP	BAYESR									
true	positive	5	4	4	23	19	23	37	31	31	6	1	41
false	positive	48	25	17	48	17	27	26	2	60	4	0	100
true	negative	48483	48506	48514	48393	48424	48414	47515	47539	47481	38537	38541	38441
false	negative	5	6	6	77	81	77	963	969	969	9994	9999	9959

num QTL	10			100			1000			10000		
method	GWAS	GBLUP	BAYESR	GWAS	GBLUP	<i>BAYESR</i>	GWAS	GBLUP	BAYESR	GWAS	GBLUP	BAYESR
true positive	50.0	40.0	40.0	23.0	19.0	23.0	3.7	3.1	3.1	0.1	0.0	0.4
false positive	90.6	86.2	81.0	67.6	47.2	54.0	41.3	6.1	65.9	40.0	0.0	70.9
true negative	100.0	100.0	100.0	99.8	99.8	99.8	98.0	98.0	98.0	79.4	79.4	79.4
false negative	50.0	60.0	60.0	77.0	81.0	77.0	96.3	96.9	96.9	99.9	100.0	99.6

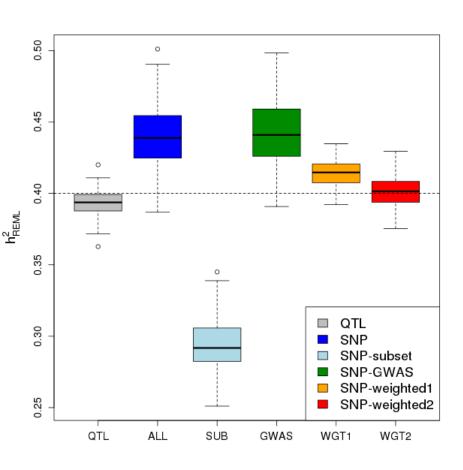
10 QTL, h2=0.4 perfect acc = 0.659

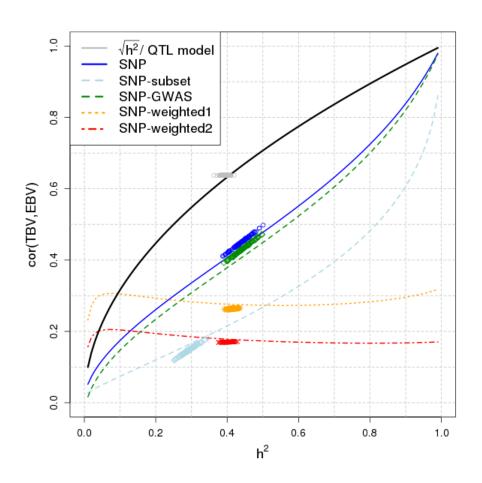
numSNP h2_disc h2_valid <u>accuracy</u> prop_h2 prop_acc	
gblup 48541 0.393 0.388 0.389 0.981 1.000	1.000
bayesr 48541 0.480 NA 0.599 1.212 1.541	1.000
qtl 10 0.376 0.405 0.659 1.022 1.696	0.193
top_gwas 485 0.321 0.400 0.597 1.009 1.535	0.554
top_gwas1 2427 0.338 0.479 0.494 1.210 1.271	0.848
top_gwas2 4854 0.396 0.506 0.468 1.277 1.203	0.921
top_gblup 485 0.379 0.373 0.508 0.942 1.306	0.581
top_gblup1 2427 0.523 0.475 0.426 1.198 1.096	0.864
top_gblup2 4854 0.637 0.515 0.398 1.300 1.023	0.930
top_bayes 485 0.380 0.428 0.564 1.080 1.451	0.635
top_bayes1 2427	0.871
top_bayes2 4854	0.934
random 10 0.010 0.069 0.212 0.175 0.545	0.137
random1 10 0.004 0.006 0.080 0.016 0.205	0.086
random2 10 0.004 0.008 0.108 0.019 0.278	0.121
random3 10 0.007 0.023 0.150 0.058 0.385	0.130
random4 10 0.007 0.033 0.120 0.082 0.310	0.140

100 QTL, h2=0.4 perfect acc = 0.643

	numSNP	h2_dis	c h2_valid	accuracy	prop_h2	prop_acc	cor_G
gblup	48541	0.376	0.500	0.441	1.250	1.000	1.000
bayesr	48541	0.540	NA	0.576	1.350	1.305	1.000
qtl	100	0.391	0.392		0.980	1.434	0.357
top_gwas	485	0.303	0.324	0.535	0.812	1.213	0.536
top_gwas1	2427	0.338	0.425	0.452	1.064	1.024	0.835
top_gwas2	4854	0.399	0.466	0.446	1.166	1.011	0.917
top_gblup	485	0.378	0.340	0.499	0.852	1.130	0.576
top_gblup1	2427	0.533	0.423	0.419	1.057	0.950	0.864
top_gblup2	4854	0.641	0.488	0.416	1.222	0.944	0.930
top_bayes	485	0.381	0.352	0.543	0.881	1.231	0.627
top_bayes1	2427	0.462	0.422	0.459	1.055	1.040	0.877
top_bayes2	4854	0.512	0.455	0.448	1.137	1.015	0.935
random	100	0.046	0.100	0.245	0.251	0.555	0.370
random1	100	0.045	0.121	0.277	0.304	0.627	0.337
random2	100	0.045	0.113	0.241	0.282	0.546	0.288
random3	100	0.043	0.088	0.274	0.219	0.621	0.318
random4	100	0.051	0.089	0.272	0.223	0.617	0.358

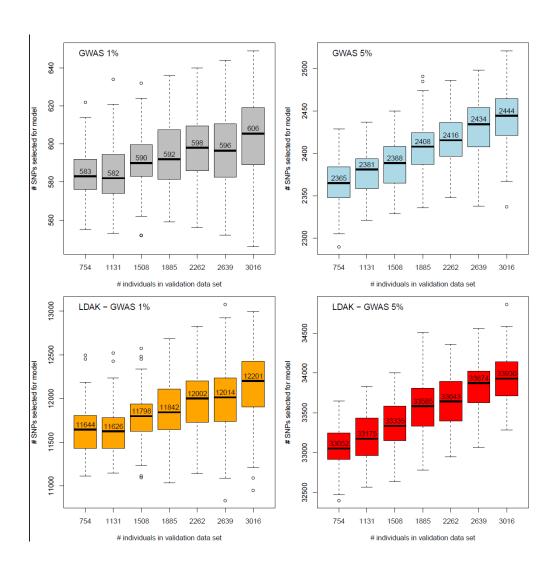
1000 QTL, h2=0.4 perfect acc = 0.634

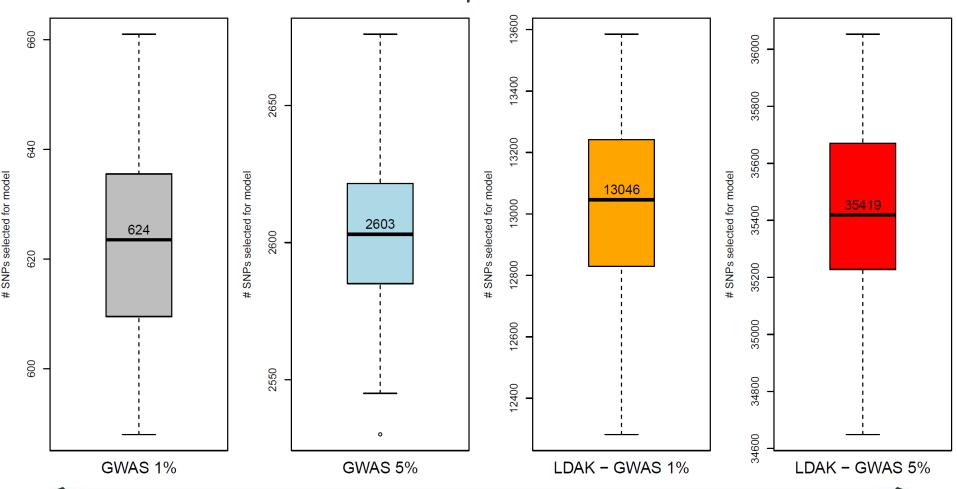

	numSNP	h2_disc	h2_valid	accuracy	prop_h2	prop_acc	cor_G
gblup	48541	0.423	0.462	0.347	1.164	1.000	1.000
bayesr	48541	0.623 N	А	0.378	1.572	1.090	1.000
qtl	1000	0.427	0.459		1.158	1.637	0.774
top_gwas	485	0.269	0.309	0.460	0.778	1.324	0.575
top_gwas1	2427	0.351	0.332	0.443	0.838	1.275	0.851
top_gwas2	4854	0.405	0.408	0.412	1.030	1.188	0.920
top_gblup	485	0.384	0.323	0.477	0.815	1.375	0.591
top_gblup1	2427	0.541	0.425	0.419	1.072	1.207	0.866
top_gblup2	4854	0.640	0.442	0.378	1.115	1.090	0.929
top_bayes	485	0.326	0.261	0.401	0.658	1.154	0.620
top_bayes1	2427	0.481	0.383	0.406	0.967	1.169	0.871
top_bayes2	4854	0.560	0.404	0.395	1.018	1.139	0.933
random	1000	0.079	0.088	0.190	0.222	0.546	0.757
random1	1000	0.098	0.171	0.127	0.431	0.366	0.752
random2	1000	0.079	0.140	0.195	0.352	0.563	0.763
random3	1000	0.080	0.101	0.158	0.255	0.454	0.767
random4	1000	0.094	0.098	0.113	0.246	0.327	0.752



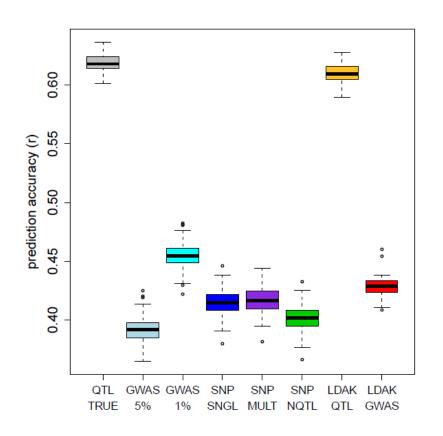
10000 QTL, h2=0.4 perfect acc = 0.629

	numSNP	h2_disc	h2_valid	accuracy	prop_h2	prop_acc cor_G	
gblup	48541	0.403	0.265	0.311	0.647	1.000	1.000
bayesr	48541	0.626 N	NA	0.269	1.530	0.864	1.000
qtl	10000	0.388	0.301		0.736	1.144	0.973
top_gwas	485	0.182	0.167	0.252	0.408	0.811	0.571
top_gwas1	2427	0.302	0.257	0.281	0.629	0.903	0.838
top_gwas2	4854	0.364	0.279	0.316	0.681	1.015	0.918
top_gblup	485	0.318	0.186	0.260	0.453	0.835	0.585
top_gblup1	2427	0.529	0.261	0.289	0.637	0.928	0.862
top_gblup2	4854	0.629	0.251	0.288	0.613	0.927	0.927
top_bayes	485	0.246	0.150	0.193	0.368	0.622	0.609
top_bayes1	2427	0.448	0.249	0.237	0.608	0.762	0.873
top_bayes2	4854	0.540	0.293	0.250	0.716	0.805	0.936
random	10000	0.288	0.201	0.294	0.491	0.944	0.971
random1	10000	0.289	0.252	0.280	0.617	0.901	0.972
random2	10000	0.262	0.220	0.311	0.537	0.999	0.972
random3	10000	0.277	0.246	0.279	0.601	0.896	0.971
random4	10000	0.284	0.236	0.237	0.576	0.761	0.972


Bea's plots



Number of SNP selected – sheep 100 QTL


Number of SNP selected – sheep FEC

Boxplot prediction accuracy – sheep 100 QTL

□ ○ QTL - TRUE
□ ○ GWAS - 5%
□ ○ GWAS - 1%
□ ○ SNP - SNGL
□ ○ SNP - MULT
□ ○ SNP - NQTL
□ × LDAK - QTL
■ × LDAK - GWAS

