Novel reproduction traits for genetic evaluation.

Matt Wolcott
Animal Genetics and Breeding Unit, University of New England, Armidale. Australia.
Outline

1. Developing new reproduction phenotypes.
 – Beef CRC research.

2. Implementation of new reproduction traits in industry.
 – Repronomics project.
 – ‘Kaiuroo’ intensive phenotyping in industry.

3. Recent research in temperate beef breeds.
 – Evaluating new reproduction traits in Angus and Hereford.
Beef CRC research:
Opportunities for selection to improve reproduction rates in tropical beef breeds.
(2000 – 2014)
The Beef CRC (Co-operative Research Centre for Beef Genetic Technologies)

Beef CRC research into the genetics of female reproduction

- Cross-discipline collaborative research project.
- Industry supported to focused on tropical beef genotypes.
- 14 year long progeny test experiment.
 - CRCII: Steer carcass and heifer puberty.
 - CRCIII: Cow rebreeding, lifetime reproduction and body composition.
Experimental design:

- 1030 Brahman females (6 herds).
- 1130 T. Composites (4 herds).
- Progeny of ~ 50 BRAH and 50 TCOMP Sires.
- Female reproduction intensively recorded.
- Half sib brothers feedlot finished (540kg liveweight).
Female management:

- Heifers first mated as 2 year olds.
- 3 month mating period.
- Managed under commercial conditions through up to 6 matings.
- Culled only on repeated failure to wean a calf.
Measuring female reproduction

- By ultrasound scanning for ovarian function.
Measuring female reproduction

- By ultrasound scanning for ovarian function.
Measuring female reproduction

- By ultrasound scanning for ovarian function.

Pre-pubertal ovary (many small follicles)

Cycling ovary (One large CL)
Beef CRC

Measuring female reproduction
- By ultrasound scanning for ovarian function.

Age at puberty (AP)
- From weaning till *corpus luteum* (CL) detected.
- 2 – 15 measurements / heifer.
Beef CRC

Measuring female reproduction
• By ultrasound scanning for ovarian function.

Age at puberty (AP)
• From weaning till corpus luteum (CL) detected.
• 2 – 15 measurements / heifer.

Lactation anestrous interval (LAI)
• Lactating cows at 2nd natural mating.
• Calculated as days from bull-in date to first detected CL.
Measuring female reproduction
• By ultrasound scanning for ovarian function.

Age at puberty (AP)
• From weaning till corpus luteum (CL) detected.
• 2 – 15 measurements / heifer.

Lactation anestrous interval (LAI)
• Lactating cows at 2nd natural mating.
• Calculated as days from bull-in date to first detected CL.

At end of CRC III: 60 records / female 356,000 scans
Beef CRC Key results

Lifetime weaning rate

- Closest trait to that in the breeding objective.

 \[\text{Calves weaned} / \text{mating seasons in experiment.} \]

<table>
<thead>
<tr>
<th>MEASURE</th>
<th>Brahman</th>
<th>Tropical Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>1020</td>
<td>1117</td>
</tr>
<tr>
<td>Average</td>
<td>0.62</td>
<td>0.78</td>
</tr>
<tr>
<td>Sire EBV range</td>
<td>-0.11 to 0.16</td>
<td>-0.06 to 0.08</td>
</tr>
<tr>
<td>Heritability</td>
<td>0.11</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Beef CRC Key results

Age at puberty

- Very heritable for a reproduction trait ($h^2 = 0.5$ to 0.6).
- Large genetic variation within genotypes.
Beef CRC Key results

Age at puberty

- Very heritable for a reproduction trait ($h^2 = 0.5$ to 0.6).
- Large genetic variation within genotypes.

Range in age at puberty for BRAH heifers.
- Mated as 2 year olds.
Beef CRC Key results

Age at puberty

- Very heritable for a reproduction trait ($h^2 = 0.5$ to 0.6).
- Large genetic variation within genotypes.

Range in age at puberty for BRAH heifers.
- Mated as 2 year olds.
- Only 51% cycling into mating
Beef CRC Key results

Age at puberty

- Very heritable for a reproduction trait ($h^2 = 0.5$ to 0.6).
- Large genetic variation within genotypes (breeds).

Range in age at puberty for BRAH heifers.
- Mated as 2 year olds.
- Only 51% cycling into mating
- 13% failed to reach puberty by the end of their 1st mating season.
Beef CRC Key results

Age at puberty

- Very heritable for a reproduction trait ($h^2 = 0.5$ to 0.6).
- Large genetic variation within genotypes (breeds).

Range in age at puberty for BRAH heifers.
- Mated as 2 year olds.
- Only 51% cycling into mating
- 13% failed to reach puberty by the end of their 1st mating season.

Of those which did cycle:
- 90% conceived and 72% weaned a calf.
- Overall weaning rate of 62%.
Beef CRC Key results

Age at puberty

- Very heritable for a reproduction trait ($h^2 = 0.5$ to 0.6).
- Large genetic variation within genotypes (breeds).

Range in age at puberty for BRAH heifers.
- Mated as 2 year olds.
- Only 51% cycling into mating
- 13% failed to reach puberty by the end of their 1st mating season.

Of those which did cycle:
- 90% conceived and 72% weaned a calf.
- Overall weaning rate of 62%.

Massive opportunity to apply selection to improve AP in Brahman females
Lactation anestrus interval

- Also highly heritable ($h^2 = 0.3$ to 0.5).
- Also large variation within genotypes (breeds).
- Lots of opportunity to identify genetically superior animals.
- AP only directly influences first mating outcome.
- LAI impacts rebreeding in lactating females every year.
LAI EBVs for Brahman sires

Australian EBVs = 2 x EPD.
Beef CRC Key results

LAI EBVs for Brahman sires

Australian EBVs = 2 x EPD.

- Range of > 200 days in LAI EBVs.

<table>
<thead>
<tr>
<th>Beef CRC Brahman Sire</th>
<th>LAI EBV (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANCEFIELD 4999M</td>
<td>-100</td>
</tr>
<tr>
<td>MR V8 797/3 (IMP US)</td>
<td>-95</td>
</tr>
<tr>
<td>TARTRUS 3886 (AI) (ET)</td>
<td>-89</td>
</tr>
<tr>
<td>CONA CREEK 2722</td>
<td>-71</td>
</tr>
<tr>
<td>NEWCASTLE WATERS TOBY G774 (ET)</td>
<td>-63</td>
</tr>
<tr>
<td>LANCEFIELD 4461</td>
<td>-60</td>
</tr>
<tr>
<td>McKELLAR RICARDO 3/840 (IMP US)</td>
<td>-58</td>
</tr>
<tr>
<td>TARTRUS ABEL MANSO 4182 (AI) (ET)</td>
<td>-55</td>
</tr>
<tr>
<td>BELMONT 96-478</td>
<td>-52</td>
</tr>
<tr>
<td>CARINYA 1926</td>
<td>-40</td>
</tr>
<tr>
<td>CBV PROVIDOR 96-6822</td>
<td>51</td>
</tr>
<tr>
<td>CARINYA MAX 1739</td>
<td>54</td>
</tr>
<tr>
<td>TARTRUS 2415 (ET)</td>
<td>57</td>
</tr>
<tr>
<td>TARTRUS 3292</td>
<td>62</td>
</tr>
<tr>
<td>JDH DENVER DE MANSO 818/7 (IMP US)</td>
<td>63</td>
</tr>
<tr>
<td>LANCEFIELD AMBITION 7736</td>
<td>65</td>
</tr>
<tr>
<td>LYNDHURST 1660/7</td>
<td>73</td>
</tr>
<tr>
<td>WAVERLEY SUPREME DE MANSO 6263</td>
<td>79</td>
</tr>
<tr>
<td>TARTRUS MR MANSO 025 (ET)</td>
<td>114</td>
</tr>
<tr>
<td>BELMONT 79/96 (AI)</td>
<td>169</td>
</tr>
</tbody>
</table>
Beef CRC Key results

LAI EBVs for Brahman sires

Australian EBVs = 2 x EPD.

- Range of > 200 days in LAI EBVs.
- Best sire’s progeny will have a lactation anestrus period 3 months shorter than the worst.

<table>
<thead>
<tr>
<th>Beef CRC Brahman Sire</th>
<th>LAI EBV (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANCEFIELD 4999M</td>
<td>-100</td>
</tr>
<tr>
<td>MR V8 797/3 (IMP US)</td>
<td>-95</td>
</tr>
<tr>
<td>TARTRUS 3886 (AI) (ET)</td>
<td>-89</td>
</tr>
<tr>
<td>CONA CREEK 2722</td>
<td>-71</td>
</tr>
<tr>
<td>NEWCASTLE WATERS TOBY G774 (ET)</td>
<td>-63</td>
</tr>
<tr>
<td>LANCEFIELD 4461</td>
<td>-60</td>
</tr>
<tr>
<td>McKELLAR RICARDO 3/840 (IMP US)</td>
<td>-58</td>
</tr>
<tr>
<td>TARTRUS ABEL MANSO 4182 (AI) (ET)</td>
<td>-55</td>
</tr>
<tr>
<td>BELMONT 96-478</td>
<td>-52</td>
</tr>
<tr>
<td>CARINYA 1926</td>
<td>-40</td>
</tr>
<tr>
<td>CBV PROVIDOR 96-6822</td>
<td>51</td>
</tr>
<tr>
<td>CARINYA MAX 1739</td>
<td>54</td>
</tr>
<tr>
<td>TARTRUS 2415 (ET)</td>
<td>57</td>
</tr>
<tr>
<td>TARTRUS 3292</td>
<td>62</td>
</tr>
<tr>
<td>JDH DENVER DE MANSO 818/7 (IMP US)</td>
<td>63</td>
</tr>
<tr>
<td>LANCEFIELD AMBITION 7736</td>
<td>65</td>
</tr>
<tr>
<td>LYNDHURST 1660/7</td>
<td>73</td>
</tr>
<tr>
<td>WAVERLEY SUPREME DE MANSO 6263</td>
<td>79</td>
</tr>
<tr>
<td>TARTRUS MR MANSO 025 (ET)</td>
<td>114</td>
</tr>
<tr>
<td>BELMONT 79/96 (AI)</td>
<td>169</td>
</tr>
</tbody>
</table>
Beef CRC Key results

LAI EBVs for Brahman sires

Australian EBVs = 2 x EPD.

- Range of > 200 days in LAI EBVs.
- Best sire’s progeny will have a lactation anestrus period 3 months shorter than the worst.
- If mating for 3 months, the progeny of the worst sires won’t (*on average*) cycle before the end of mating.

<table>
<thead>
<tr>
<th>Beef CRC Brahman Sire</th>
<th>LAI EBV (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANCEFIELD 4999M</td>
<td>-100</td>
</tr>
<tr>
<td>MR V8 797/3 (IMP US)</td>
<td>-95</td>
</tr>
<tr>
<td>TARTRUS 3886 (AI) (ET)</td>
<td>-89</td>
</tr>
<tr>
<td>CONA CREEK 2722</td>
<td>-71</td>
</tr>
<tr>
<td>NEWCASTLE WATERS TOBY G774 (ET)</td>
<td>-63</td>
</tr>
<tr>
<td>LANCEFIELD 4461</td>
<td>-60</td>
</tr>
<tr>
<td>McKELLAR RICARDO 3/840 (IMP US)</td>
<td>-58</td>
</tr>
<tr>
<td>TARTRUS ABEL MANSO 4182 (AI) (ET)</td>
<td>-55</td>
</tr>
<tr>
<td>BELMONT 96-478</td>
<td>-52</td>
</tr>
<tr>
<td>CARINYA 1926</td>
<td>-40</td>
</tr>
<tr>
<td>CBV PROVIDOR 96-6822</td>
<td>51</td>
</tr>
<tr>
<td>CARINYA MAX 1739</td>
<td>54</td>
</tr>
<tr>
<td>TARTRUS 2415 (ET)</td>
<td>57</td>
</tr>
<tr>
<td>TARTRUS 3292</td>
<td>62</td>
</tr>
<tr>
<td>JDH DENVER DE MANSO 818/7 (IMP US)</td>
<td>63</td>
</tr>
<tr>
<td>LANCEFIELD AMBITION 7736</td>
<td>65</td>
</tr>
<tr>
<td>LYNDHURST 1660/7</td>
<td>73</td>
</tr>
<tr>
<td>WAVERLEY SUPREME DE MANSO 6263</td>
<td>79</td>
</tr>
<tr>
<td>TARTRUS MR MANSO 025 (ET)</td>
<td>114</td>
</tr>
</tbody>
</table>
| BELMONT 79/96 (AI) | 169
Beef CRC Key results

Male reproduction

• Male progeny of cows evaluated for AP and LAI
 – Retained as bulls.
 – Semen sampled at 12, 18 and 24 months old.
 – Sperm morphology assessment of 100 cells/sample.
 – Identified and classified non-viable cells.
 – Percent normal sperm = proportion of viable sperm cells.
Beef CRC Key results

Percent normal sperm

- Genetic variation (and h^2) very age dependent.
Beef CRC Key results

Percent normal sperm

- Genetic variation (and h^2) very age dependent.

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>Brahman V_a</th>
<th>Brahman h^2</th>
<th>Tropical Composite V_a</th>
<th>Tropical Composite h^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>0.0</td>
<td>297</td>
<td>0.4</td>
</tr>
<tr>
<td>18</td>
<td>199</td>
<td>0.3</td>
<td>97</td>
<td>0.2</td>
</tr>
<tr>
<td>24</td>
<td>75</td>
<td>0.2</td>
<td>97</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Beef CRC Key results

Percent normal sperm

- Genetic variation (and h^2) very age dependent.
- Very few Brahman bulls produced a viable sample at 12 months old.
 - 18 mths showed greatest V_a and h^2.
- For Tropical Composites PNS showed greatest potential for selection at 12 months of age.

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>Brahman V_a</th>
<th>Brahman h^2</th>
<th>Tropical Composite V_a</th>
<th>Tropical Composite h^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>0.0</td>
<td>297</td>
<td>0.4</td>
</tr>
<tr>
<td>18</td>
<td>199</td>
<td>0.3</td>
<td>97</td>
<td>0.2</td>
</tr>
<tr>
<td>24</td>
<td>75</td>
<td>0.2</td>
<td>97</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Additive variance and heritability for PNS in 1300 Brahman and 2000 Tropical Composite bulls.
Beef CRC Key results

PNS vs female reproduction

• For Brahmans, PNS at 18 and 24 months had moderate favourable genetic relationships with female reproduction traits.
Beef CRC Key results

PNS vs female reproduction

• For Brahmans, PNS at 18 and 24 months had moderate favourable genetic relationships with female reproduction traits.

<table>
<thead>
<tr>
<th>Bull age</th>
<th>AP</th>
<th>LAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 months</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>18 months</td>
<td>-0.5</td>
<td>-0.6</td>
</tr>
<tr>
<td>24 months</td>
<td>-0.3</td>
<td>-0.7</td>
</tr>
</tbody>
</table>
Beef CRC Key results

PNS vs female reproduction

- For Brahmans, PNS at 18 and 24 months had moderate favourable genetic relationships with female reproduction traits.

- Measures in selection candidates can be exploited to select to improve female reproduction.

- Opportunity to increase genetic gains for female reproduction.

<table>
<thead>
<tr>
<th>Bull age</th>
<th>AP</th>
<th>LAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 months</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>18 months</td>
<td>-0.5</td>
<td>-0.6</td>
</tr>
<tr>
<td>24 months</td>
<td>-0.3</td>
<td>-0.7</td>
</tr>
</tbody>
</table>
Beef CRC showed that:

- Accurate descriptors of female reproduction highly heritable.
- Opportunity to make rapid genetic progress in tropical beef breeds.
- Male traits can be exploited as genetic indicators of AP & LAI.
- Difficult, expensive and ‘expertise intensive’ to record.
- Prime candidates for recording in reference populations.
Beef CRC outcomes

In BREEDPLAN evaluation for tropical breeds:

• AP and LAI analysed as correlated traits with days to calving.
 – Recorded intensively in reference population.
 – Genomics helps spread accuracy to related animals.
 – Increase accuracy and spread of DTC EBVs.

• Percent normal sperm published as an EBV.
 • For Brahman and Santa Gertrudis (DM coming).
 • Allows breeders to select to improve PNS directly.
 • Analysed as a correlated trait with female reproduction.
Novel reproduction traits:
Recording hard to measure phenotypes in industry.
Novel reproduction traits:
Recording hard to measure phenotypes in industry.

1. The Repronomics project.
The Repronomics project

Accelerating ΔG for female reproduction

• Large industry (MLA) funded project
 – Led by Dr. David Johnston.
 – Applying Beef CRC results in industry.

• Intensively recording female reproduction.
 – Heifers scanned to determine age at puberty.
 – Lactating first calvers scanned to measure lactation anoestrus interval.
 – Males finished and slaughtered for carcass traits.
The Repronomics project

Expands the Beef CRC focused on tropical breeds.

- Purebred Brahman, Santa Gertrudis and Droughtmaster.
- And X-breeds in *next* phase of the project.
- Results are incorporated in genetic evaluations.
 - AP and LAI already analysed for Brahmans.
 - Coming soon for Santa Gertrudis and Droughtmaster.
Novel reproduction traits:
Recording hard to measure phenotypes in industry.

2. ‘Kaiuroo’ MDC project.
Kaiuroo snapshot

- The ‘Kaiuroo Aggregation’
 - 5 neighbouring properties.
 - In the Fitzroy River basin.
 - 34,500ha with 600ha irrigated leucaena.
 - 1,000 Brahman stud female.
 - 5,000 commercial cows (Brahman and X-bred)
• Commercial steers to organic market
 – Australian certified organic.
 – Tight specifications around weight and growth (> 480kg live with minimum ADG).
 – Significant premium for compliant animals.

• High cost of production to meet market specifications
 – AGBU approached in 2014 to help with breeding program to increase compliance rate and profitability.
Kaiuroo breeding program

• Reviewed Kaiuroo breeding program 2014.
 – Low reproduction rates (stud and commercial).
 – Below breed average DTC & SC.
 – Breed average growth, fat, EMA, SF, FT.

• Review concluded that:
 – Targeted breeding program could improve $.
 – Intensive recording in stud would increase ΔG.
 – Production system and market unique enough for a custom selection index.
Kaiuroo breeding program

• Implemented ovarian scanning program
 – Age at puberty.
 – Lactation anoestrous interval.

• All bulls morphology tested
 – Percent normal sperm.
Kaiuroo research

MLA Donor Company (MDC)

• Clear benefit at the industry (breed) level.
 – Brahman BREEDPLAN genetic evaluation.
 – Only source of PNS data when established.

• Received industry support for
 – Intensive recording of reproduction traits.
 – Genotyping of all recorded males and females.

• Satellite project to Repronomics®.
Kaiuroo MDC outcomes

• Records collected
 – 700 heifers scanned for age at puberty
 – 365 lactating first calvers scanned for LAI.
 – 725 bulls evaluated for percent normal sperm.
 – All animals genotyped with custom *indicus* 35K chip.

• Sires evaluated
 – 70 bulls with progeny evaluated in 3 year project.
 – With a total of 7,120 progeny in Brahman analysis.
 – 26 of which have 2,380 progeny outside of Kaiuroo.
Kaiuroo MDC outcomes

• On average, sire PNS EBVs increased accuracy by ~ 30%.

• Female reproduction EBV accuracy improved by 7 – 15%.
 – In addition to large boost from Repronomics project.

• Improving opportunity for Brahman breeders to select for greater profitability.
Novel reproduction traits:
Recording hard to measure phenotypes in industry.

3. Extending what we’ve learned in tropical breeds to *Bos taurus* cattle.
Trans-Tasman beef cow productivity project

Objectives:

• Apply serial scanning methods developed in the Beef CRC.

• To estimate age at puberty (AP) in temperate beef heifers (Hereford & Angus).

• Quantify variation in AP in the current seedstock population.

• Determine genetic parameters for age at puberty and associated traits.
 – genetic correlations with growth and body composition.
Experimental design

• Data collected in 7 Angus and 3 Hereford seedstock herds

• All heifers scanned were registered with Angus Australia or Herefords Australia.

• Dates of birth, genotypes and pedigree recorded.
Trans-Tasman beef cow productivity project

Experimental design

• Scanning commenced from first observed oestrus behaviour.

• Repeated every 4 – 6 weeks to mating.

• Averaged 3 scans in Herefords and 4 in Angus herds.
Trans-Tasman beef cow productivity project

Traits analysed

• Pubertal into mating (PUB).
 – Binary trait: displayed a CL up to mating (1) or not (0)

• Age at puberty (AP: in cycling females only)
 – Date of first CL – DOB.

• Penalised AP (APP: available for all females)
 – Maximum AP of contemporary group + 21 days (1 cycle).
 – For females which failed to display a CL up to mating.
Trans-Tasman beef cow productivity project

Traits analysed

• Also recorded growth and body composition traits at each scan:
 – Liveweight (kg)
 – Hip Height (cm)
 – P8 fat depth (mm)
 – Body condition score
 • 1 (poor) to 5 (fat)
Traits analysed

- Also recorded growth and body composition traits at each scan:
 - Liveweight (kg)
 - Hip Height (cm)
 - P8 fat depth (mm)
 - Body condition score
 - 1 (poor) to 5 (fat)

Not accredited scanners (or experienced BCS scorers)
Trans-Tasman beef cow productivity project

Key results

• 52% of heifers were pubertal as they entered their first mating.
Descriptive statistics for heifer ovarian scanned traits

<table>
<thead>
<tr>
<th>Breed / Trait</th>
<th>Units</th>
<th>Number of records</th>
<th>Mean</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at puberty</td>
<td>Days</td>
<td>1546</td>
<td>344.5</td>
<td>64.0</td>
</tr>
<tr>
<td>AP (penalty)</td>
<td>Days</td>
<td>2939</td>
<td>393.2</td>
<td>72.2</td>
</tr>
<tr>
<td>Percent Pubertal</td>
<td>%</td>
<td>2939</td>
<td>52.6</td>
<td>50.0</td>
</tr>
<tr>
<td>Hereford</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at puberty</td>
<td>Days</td>
<td>481</td>
<td>365.8</td>
<td>38.3</td>
</tr>
<tr>
<td>AP (penalty)</td>
<td>Days</td>
<td>902</td>
<td>396.2</td>
<td>44.3</td>
</tr>
<tr>
<td>Percent Pubertal</td>
<td>%</td>
<td>917</td>
<td>52.4</td>
<td>50.0</td>
</tr>
</tbody>
</table>
Trans-Tasman beef cow productivity project

Key results

• 52% of heifers were pubertal as they entered their first mating.
• On average, heifers were in good condition going into mating.
Trans-Tasman beef cow productivity project

Descriptive statistics for heifer growth and body composition traits

<table>
<thead>
<tr>
<th>Breed / Trait</th>
<th>Units</th>
<th>Number</th>
<th>Post-weaning</th>
<th>Into mating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Days</td>
<td>3205</td>
<td>297.1</td>
<td>412.8</td>
</tr>
<tr>
<td>Liveweight</td>
<td>kg</td>
<td>3196</td>
<td>299.6</td>
<td>367.2</td>
</tr>
<tr>
<td>Hip Height</td>
<td>cm</td>
<td>3198</td>
<td>116.9</td>
<td>123.8</td>
</tr>
<tr>
<td>Condition score</td>
<td>1 – 5 score</td>
<td>3201</td>
<td>2.9</td>
<td>3.3</td>
</tr>
<tr>
<td>P8 fat depth</td>
<td>mm</td>
<td>3203</td>
<td>4.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Hereford</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Days</td>
<td>995</td>
<td>270.4</td>
<td>401.1</td>
</tr>
<tr>
<td>Liveweight</td>
<td>kg</td>
<td>963</td>
<td>262.8</td>
<td>343.8</td>
</tr>
<tr>
<td>Hip Height</td>
<td>cm</td>
<td>962</td>
<td>116.5</td>
<td>122.8</td>
</tr>
<tr>
<td>Condition score</td>
<td>1 – 5 score</td>
<td>964</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>P8 fat depth</td>
<td>mm</td>
<td>961</td>
<td>3.6</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Trans-Tasman beef cow productivity project

Key results

- 52% of heifers were pubertal as they entered their first mating.
- On average, heifers were in good condition going into mating.
- No difference between Hereford and Angus heifers.
Trans-Tasman beef cow productivity project

![Bar chart showing cumulative percent puberty at different scanning times for Hereford and Angus cattle.]

- **Post-Weaning**
 - Hereford: ~0.2
 - Angus: ~0.25
- **Scan 2**
 - Hereford: ~0.3
 - Angus: ~0.4
- **Scan 3**
 - Hereford: ~0.4
 - Angus: ~0.5
- **Into Mating**
 - Hereford: ~0.5
 - Angus: ~0.5
Trans-Tasman beef cow productivity project

Key results

• 52% of heifers were pubertal as they entered their first mating.

• On average, heifers were in good condition going into mating.

• No difference between Hereford and Angus heifers.

• Puberty traits heritable for both breeds.
Trans-Tasman beef cow productivity project

Genetic parameters for heifer puberty traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>Units</th>
<th>σ_a</th>
<th>h^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEREFORD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at puberty</td>
<td>Days</td>
<td>363.0</td>
<td>0.26</td>
</tr>
<tr>
<td>AP (penalty)</td>
<td>Days</td>
<td>588.7</td>
<td>0.38</td>
</tr>
<tr>
<td>Percent Pubertal</td>
<td>%</td>
<td>0.05</td>
<td>0.36</td>
</tr>
<tr>
<td>ANGUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at puberty</td>
<td>Days</td>
<td>325.1</td>
<td>0.27</td>
</tr>
<tr>
<td>AP (penalty)</td>
<td>Days</td>
<td>971.8</td>
<td>0.37</td>
</tr>
<tr>
<td>Percent Pubertal</td>
<td>%</td>
<td>0.08</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Key results

• 52% of heifers were pubertal as they entered their first mating.

• On average, heifers were in good condition going into mating.

• No difference between Hereford and Angus heifers.

• Puberty traits heritable for both breeds.

• Genetic correlations with body composition traits were low.
Trans-Tasman beef cow productivity project

Genetic correlations: APP vs into-mating growth and body composition

<table>
<thead>
<tr>
<th>Into-mating</th>
<th>Genetic correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liveweight (kg)</td>
<td>-0.20</td>
</tr>
<tr>
<td>Hip Height (cm)</td>
<td>-0.05</td>
</tr>
<tr>
<td>P8 fat depth (mm)</td>
<td>-0.14</td>
</tr>
<tr>
<td>Condition score (1 -5)</td>
<td>-0.26</td>
</tr>
</tbody>
</table>
Trans-Tasman beef cow productivity project

Key results

• 52% of heifers were pubertal as they entered their first mating.

• On average, heifers were in good condition going into mating.

• No difference between Hereford and Angus heifers.

• Puberty traits were heritable for both breeds.

• Genetic correlations with body composition traits were low.
Trans-Tasman beef cow productivity project

Next steps

• Need to record the trait in naturally mated females.

• New project will mate 2,000 females annually in research herds.

• Evaluate age at puberty and lactation anoestrus interval.

• In females sourced from well recorded Breedplan herds.

• For Angus, Hereford, Shorthorn, Wagyu, Charolais and Brahman.
Conclusions

- Proven and implemented opportunities to rapidly improve accuracy of reproduction EBVs in tropical breeds.
- Reference population projects in commercial seedstock herds have been undertaken successfully.
- Research in temperate breeds at much earlier stage.
- Early results suggest AP warrants monitoring & can be improved by selection.
- More research needed to understand LAI and interactions with other aspects of productivity.
Thank you

Many people to thank for all their work in making this data available:

• Beef CRC co-operating breeders
• Beef CRC researchers & technicians.
• Beef-CRC co-operating processors.

• Norther Pastoral Companies
 – Stanbroke.
 – Australian Agricultural Company. (AA Co.)
 – North Australian Pastoral Company (NAPCo).
Thank you

Many people to thank for all their work in making this data available:

• Beef and Lamb NZ.
• Meat and Livestock Australia.
• Angus Australia.
• Herefords Australia Ltd.
• AbacusBio.