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Current genomically-enhanced EPD

• Generally based on genotyping arrays (20-100K depending on 
iteration)

• Inserted into EPD prediction using a single-step approach that 
is generally unweighted (but could be weighted)

– May or may not be based on a reduced set

• Rarely takes advantage of functional variants or other possible 
causal variants



Functional variants 

• Gene annotation
– Understanding the coding regions

• Identifying mutations that alter gene products or stop protein formation 
completely

• Advances in next generation sequencing and genome annotations have 
significantly improved discovery of these mutations

– Deleterious mutations that stop protein coding could certainly 
affect fertility

• These and protein changing mutations could impact several trait 
complexes 

– First generation functional chip in cattle (F250K)



Could functional variants be more effective?

Genetic correlations between birth weight and GPE-trained birth weight MBV 

Marker set size
GPE 

h2

Evaluated population

SFA Red Angus Simmental

F250 shared 
with 50K 33,869 0.45 0.35 0.44 0.25

Significant GPE 
effects 279 0.34 0.44 0.43 0.25

LD reduced 12 0.30 0.49 0.47 0.28

NCAPG 1 0.06 0.31 0.32 0.22

• Small sets of functional variants can explain meaningful phenotypic 

variation within and across populations

o depends on number and size of effects - difficult to identify variants causing small 

effects, especially for traits influenced by many variants with small effects 



Problems with F250K

• Approximately 120,000 usable variants in USMARC 
populations after screening no calls, monomorphic loci, excess 
male calls

– 703/5,751 loss of function remaining (651 genes)

– 32,057/94,641 non-syn SNP (10,985 genes)

– Around 15,000 potentially regulatory SNP

• Many genes missing – could do better



New potential

• Genotyping by sequencing with low-coverage sequencing

– 40 to 60 million variants 

– Cost has scaled down with sequencing

• No need for 1x coverage/animal

– Will continue to improve with pedigree and improved reference 
haplotypes

– Low-pass or skim-sequencing 

– Accuracy upward of 99% on many breeds

• Warren Snelling will cover later



UNL/USMARC

• Current Proposal Objectives:

– Enhancing the portability of genomic predictors

– Increasing the accuracy of genomic predictors

• Both accomplished through evaluation of the use of low-
coverage sequencing in genetic evaluation systems



Current Plan

• Through increased genotyping on UNL populations and 
USMARC GPE and SFA populations, evaluate accuracy gains 
from evaluating new marker sets from low-pass sequencing

– Genotyping will be a combination of array and low-coverage 
sequencing with the opportunity to impute millions of markers 
through both populations



Animals

• Approximately 5,000 UNL animals/year 

– Partly an earlier Nebraska Beef Systems project

– Includes all UNL cow herds and animals entering UNL owned feedlots

• Another 5,000 USMARC animals/year

– Germplasm Evaluation Program (GPE)

– Selection for Function Alleles Project (SFA)

– Commercial populations with important phenotypes



Traits collected on GPE (UNL in red)

Calving

• Dystocia

• Survival

Growth

• Gestation Length

• Birth Weight

• Weaning Weight

• Postweaning

growth

• Mature weight, 

height, and 

condition

Maternal

• Birth Weight

• Dystocia

• Survival

• Weaning Weight

• Milk Production

Carcass & Meat 

Quality

• Shear force

• Yield Grade 

factors

• Marbling 

• Color Stability

• Ultrasound 

carcass

Efficiency

• Feed utilization of 

finishing steers 

• Feed utilization of 

pre-breeding 

heifers 

• Mature cow 

maintenance 

requirements 

• Rumen microbial 

composition

Reproduction

• Heifer age at 

puberty

• AFC

• Heifer pregnancy 

rate

• Cow pregnancy 

rate

• Fetal death loss

• Postpartum 

interval

Longevity

Disease Resistance 

(IBK, BRD) 

Adaptation 



Analysis

• Not straightforward 

– P >>>>> N

– Will need to design strategies that give prior weighting to different 
marker types (e.g., functional variants, regulatory variants)

– Plan includes funding for research support

• Mark Thallman will cover some initial ideas



Byproducts

• Potential for GWAS of some novel traits

– Extension of novel traits to genetic evaluation will depend on success 
of weight traits

• Primary goal is increasing utility of genetic evaluation

• Most important strategy is to help make novel traits less novel

• Understanding of imputation and storage requirements for 
low-coverage sequence

– Will help with implementation in genetic evaluation service providers 



Low-pass sequence data in 
genetic evaluation

Mention of trade names or commercial products is solely for the purpose of providing 

specific information and does not imply recommendation or endorsement by the USDA. The 

USDA is an equal opportunity provider and employer.   



Genome sequencing

• cannot read 
chromosome sequence 
from end to end

• can read fragments
50-300 bp short reads
5-20 Kbp long reads

• random process
– “library” of randomly 

fragmented DNA
– read ends of fragments
– align reads to 

reference assembly

Head et al., 2014  BioTechniques 56:61-77 



Genome coverage

10x 

2.5x 

• x = bases read /

genome length

• substantial variation 
around average coverage

• portion of genome read 
increases with coverage 



using low-pass (<2x) sequence

• variant discovery

– similar cost and effort to sequence many individuals at low coverage 
or few individuals at high coverage

• broader sampling to detect sequence variation in population

270 bulls, 28.8 million variants, 158,000 interesting variants 



using low-pass sequence

• genotyping?

– low direct call rate

• few sites covered by enough reads to call genotype from sequence

• little overlap among sites called from different samples 

– imputation – match low-coverage reads to reference haplotypes

• genotypes imputed for all variants detected in reference 

• lower per-sample costs than deep sequence or genotyping arrays for human 
GWAS

– Li et al., 2011; Pasanuic et al., 2012; Gilly et al., 2018



Gencove imputation – reference panel

• 947 cattle with > 4X 

Angus (Black & Red) Holstein

Simmental Crossbred & Composite

Hereford Brahman

Charolais Gelbvieh

Limousin Other

Maine-Anjou Jersey

Chi Shorthorn

Santa Gertrudis Beefmaster

Salers Brangus

Braunvieh



Gencove imputation – reference panel

• 59,198,025 variants

• 660,071 interesting

– change or regulate 
proteins

   High impact (LOF)

   Non-synonymous SNP

   Untranslated region
(UTR)

   Non-coding RNA



GPE sequence – Gencove imputation

Evaluate low-pass by downsampling
• mimic low-pass sequencing by sampling reads from deeper sequence 

• GPE sires

– one bull from each Cycle VII breed, Brahman, indicus-influenced composites

– > 4x downsampled to 0.4x, 0.6x, 0.8x, 1x, 2x

• Feed efficiency steers
– 79 steers with extreme intake or gain

– ~ 10x downsampled to 1x 



GPE sire sequence – Gencove imputation
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GPE steer sequence – Gencove imputation

”Call Confidence”, based on imputed genotype probabilities, indicates 
agreement between chip and imputed genotypes 

CC = mean( -log10 (1-GPmax) )

for GPmax < 1 

chip genotypes from twin ear notch

low-pass sequence from twin blood



GPE steer sequence – Gencove imputation

Genomic prediction
• (G)BLUP including all steer records

– pedigree BLUP without genotypes

– genomic BLUP with available chip genotypes

• pedigree used to impute lower density chips to BovineHD + F250  

• Marker effects for steer MBV trained by GPE without steer data

– MBV from marker effects applied to chip genotypes and genotypes imputed 
from downsampled sequence



GPE steer sequence – Gencove imputation

Correlations between steer EBV and MBV 

Birth weight PWG Marbling score

MBV BLUP GBLUP BLUP GBLUP BLUP GBLUP

Chip F250a 0.73 0.90 0.78 0.88 0.77 0.93

F250sb 0.56 0.68 0.65 0.71 0.66 0.75

50Kc 0.71 0.89 0.79 0.89 0.79 0.95

Seq F250 0.71 0.88 0.77 0.88 0.75 0.91

F250s 0.54 0.64 0.63 0.71 0.59 0.69

50K 0.70 0.84 0.80 0.90 0.76 0.93
a 116,472 (102,931) functional variants from F250; b 551 to 698 (532 to 668) selected functional variants; 
c 51,496 (48,573) variants shared by F250 and BovineHD



UNL low-pass sequence – Gencove imputation

Call confidence distribution
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low-pass sequencing & imputation

• current results suggest sequence variant genotypes can be accurately 
imputed from low-coverage sequence
– accuracy is not perfect, but imperfect accuracy recognized by genotype 

probabilities

• genotype calls for comprehensive set of known sequence variants
– 50K, HD, functional variant panels can be extracted

– eventually replace 50K with variants more likely to affect phenotypic variation 
• reduce dependence on LD between 50K & QTL

• enable more accurate genomic predictions across breeds, crosses, generations



low-pass sequencing & imputation

• cost competitive with existing SNP chips

– encourage complete genotyping

• reduce bias in genetic evaluations due to selective genotyping

– justify genotyping commercial calves

• incorporate commercial data into genetic evaluation 

• genomic predictions to support calf management and marketing decisions

• Imputation from low-coverage sequenced can avoid chip-related issues

– probe design and manufacturing costs

– large sample size needed to train genotype calls

– limited shelf-life



low-pass sequencing & imputation

Concerns and future work

• rare defect variant genotypes

– reference panel needs to include known defect carriers

• “gaps” in reference panel

– industry cattle with weak relationships to reference panel – low accuracy 
imputation

• need systematic approach to identify and fill gaps with informative haplotypes 

• imputation from chip genotypes to sequence variants
– leverage existing genotypes 
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Premises of Current Genomic EPDs

• Markers are spread evenly across the genome at intermediate 
frequencies or are selected from sets of such markers

• Assume some markers may directly affect traits, but most do 
not

• Assumes causative variation is closely associated with markers

• All genotyped animals either have, or can be imputed to a 
common set of markers

• Current genomic predictions are more accurate than 
predictions without genomics



Challenges in Current Genomic EPDs
• Some, but limited, increase in accuracy available from 

improving utilization of the markers on current chips

• Limited increase in accuracy available from increasing number 
of markers on chip of same type as are on current chips

• The high-hanging fruit is causative variation not on current 
chips that often has low minor allele frequency

– There are millions of candidates and only limited opportunities for 
prioritizing them without having genotypes to evaluate effects

– Nonetheless, Warren has shown benefits of screening putative 
functional variants from a relatively small subset of the entire pool of 
such variants



Approach to Improve Genomic Prediction 
Accuracy• Sequence influential bulls

– Discover SNP

– Impute sequence to descendants using chip genotypes

– Identify most promising sequence variants to improve accuracy
• Use functional information and preliminary associations with traits

– Develop new chips that include the promising new variants

– Determine which promising variants appear most predictive

– Include most predictive variants in genomic prediction models and future chips

– Repeat

• If this looks hard, that’s because the high hanging fruit is most of what 
is left to do and it is hard.

– But, Matt Spangler calls this iterative redesign of chips “untenable” when 
considered in the context of low-pass sequencing as an alternative.



Goals of Low-pass Sequencing

• Sequencing a random sample of the genome of an animal in 
lieu of genotyping a specific set of markers

– Short term goal is to impute to the standard set of markers used in 
current analyses at cost competitive with genotyping 

– Intermediate goal is to identify markers that are more predictive of 
important traits

– Long-term goal is to replace genotyping by imputing entire 
population to full genomic sequence



Comparison:

Chip Genotyping

• High accuracy without 
imputation

• High call rate without imputation

• If genotype called, get both 
paternal and maternal alleles

• Focused on genotypes

• Mature technology

Low-pass Sequencing

• Accuracy depends on imputation

• Call rate depends on imputation

• May impute paternal allele, but 
not maternal (or vica versa)

• Focused on haplotypes

• In early stages of development



Concerns Over Low-pass Sequencing
• How will it integrate with existing SNP chips and the subsets of SNP 

used in current genetic evaluations?

– Warren showed it is feasible (within limits)

• Will genetic defects and other “must have” variants (e.g., polled, color) 
be reported reliably?

– Several approaches available to enhance representation in the library

• Requires imputation to produce a useful result

– Imputation is already part of genomic evaluation pipeline

• Requires more sophisticated imputation than SNP chips

– Warren showed it is feasible

• Will it work for parentage determination?

– SNP chips are great for parentage determination, but low-pass will be far 
superior, extending into pedigree reconstruction



So, why consider low-pass sequencing?
• It will make the process of SNP discovery, promising variant 

identification, adding to evaluation, validating in field data, 
dropping dropouts, returning to SNP discovery, and repeating 
far more seamless, continuous, and less time consuming than 
iteratively redesigning SNP chips.

• Current cost is somewhat greater than that of 50K chips.

• Cost may decrease to below SNP chips.

• SNP discovery will be far more thorough than if it is limited to 
higher coverage of relatively few influential bulls.



Information from Sequence Compared with 50K 
Chip

TC-G-C-C-T~A-GA-A-T-T~A-C-T-T-G~GT-A-A-T-G
TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~GA-A-C-C-A

TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A
CC-A-C-G-G~G-GT-A-G-T~G-C-C-T-G~CA-A-C-C-G

TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~GT-A-A-T-G
TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A

TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~GA-A-C-C-A
CC-A-C-G-G~G-GT-A-G-T~G-C-C-T-G~CA-A-C-C-G

TA-G-C-C-G~G-CT-T-T-T~G-C-C-C-A~GT-A-A-T-G
CC-A-C-G-G~G-GT-A-G-T~G-C-C-T-G~CA-A-C-C-G

Yellow represents locations 
of markers on 50K Chip. 
There are about 60,000 
bases between them.

Blue represents locations of variable bases 
that affect an important trait. We generally 
don’t know how many or where they are.

Letters represent variable 
positions in the genome

“-” represent stretches of 
constant bases that do not 
vary in cattle. They could 
be from 1 to >1,000 bases 

(about 50 on average)

“~” represent stretches of 
constant and variable bases 

too long to represent in 
detail in the diagram 

(generally > 10,000 bases)

Only positions in yellow 
can be observed through 
the chip

“” represent the 
remainder of the 

chromosome to the right 
(or left) of this region 

(average about 50,000,000 
bases)



A Few Cautions About the Example
• If you are watching the recording at your own pace for a deeper 

understanding of the concepts:

– This is a contrived example intended to illustrate a few key concepts

– The frequencies of errors, uncalled sequence, informative sequence reads, and 
crossovers are therefore higher than might occur in practice

• All of these are concentrated in a few very short stretches of sequence in order to illustrate 
concepts associated with them

– The example assumes no sequencing errors and mutations and obscures many 
of the other complexities of real data, including determining phase and 
grandparental origin

– The example uses over-simplified logic including single base exclusions and 
matches

• It is not representative of any algorithm that would be used in practice



Low-Pass Sequencing Reads

 C-G- ~   A-A-T- ~A-C-T- ~  -A-A-T- 
 -A-A- ~G-GT- ~   -C-C-A~ -C-C-A

TA-G- ~    -T-T-T~ -G-C-T-A~GA-G- 
 C-A-C-C- ~ -GT-A- ~   -C-T-G~  -A-C-C-G

TC-A- ~   T-A-T- ~G-C-C- ~    -A-T-G
 A-G-C- ~G-CT- ~ -G-C-T- ~  -G-C-T- 



Reference Haplotype Imputation of Low-Pass 

TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A

CC-A-C-C-G~A-GT-A-G-T~.-.-C-T-G~..-A-C-C-G

3       3       3       3

TA-G- -T-T-T -G-C-T-A GA-G-

C-A-C- -GT-A- -C-T-G   -A-C-C-G

4           4            None      None

1 TC-G-C-C-T~A-GA-A-T-T~A-C-T-T-G~GT-A-A-T-G
2 TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~GA-A-C-C-A
3 TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A
4 CC-A-C-C-G~A-GT-A-G-T~A-G-C-C-G~CA-G-A-C-G

Ø CC-A-C-G-G~G-GT-A-G-T~G-C-C-T-G~CA-A-C-C-G

2 Imputation errors due to cow’s maternal 
haplotype not being included in reference panel

Cow’s maternal haplotype 
(not included in reference 

haplotype panel)

These sequences match Haplotype 4, so 
surrounding sequence is imputed to it

These sequences do not match 
any haplotype in reference, so 

surrounding sequence is missing

Dots represent bases that cannot 
be imputed unambiguously



Add Sparse Coverage of Descendants 

TC-G-C-C-T~A-GA-A-T-T~A-C-T-T-G~GT-A-A-T-G
TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~GA-A-C-C-A

TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A
CC-A-C-C-G~A-GT-A-G-T~.-.-C-T-G~..-A-C-C-G

TC-A-A-C-G~G-GT-A-T-A~G-C-C-.-.~G.-A-A-T-G
TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A

 -GT-A-T-A 
 G-GT-A-G- 

 A-G-C- -C-C-A 
 -A-C-G-G CA-A- 



Determine Grandparental Origin of 
Descendants 

TC-G-C-C-T~A-GA-A-T-T~A-C-T-T-G~GT-A-A-T-G
TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~GA-A-C-C-A

TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A
CC-A-C-C-G~A-GT-A-G-T~.-.-C-T-G~..-A-C-C-G

TC-A-A-C-G~G-GT-A-T-A~G-C-C-.-.~G.-A-A-T-G
TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A

 -GT-A-T-A 
 G-GT-A-G- 

 A-G-C- -C-C-A 
 -A-C-G-G CA-A- 



Fill Non-Recombinants with Parental 
Haplotypes

TC-G-C-C-T~A-GA-A-T-T~A-C-T-T-G~GT-A-A-T-G
TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~GA-A-C-C-A

TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A
CC-A-C-C-G~A-GT-A-G-T~.-.-C-T-G~..-A-C-C-G

TC-A-A-C-G~G-GT-A-T-A~G-C-C-.-.~G.-A-A-T-G
TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A

TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~GA-A-C-C-A
CC-A-C-C-G~G-GT-A-G-T~.-.-C-T-G~..-A-C-C-G

TA-G-C-C-G~G-.T-.-T-.~G-.-C-C-A~G.-A-A-T-G
CC-A-C-G-G~G-GT-A-G-T~.-.-C-T-G~CA-A-C-C-G



Impute from Progeny to Parents

TC-G-C-C-T~A-GA-A-T-T~A-C-T-T-G~GT-A-A-T-G
TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~GA-A-C-C-A

TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A
CC-A-C-.-G~.-GT-A-G-T~.-.-C-T-G~CA-A-C-C-G

TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~G.-A-A-T-G
TA-G-C-C-G~G-CT-T-T-T~G-G-C-T-A~GA-G-C-T-A

TC-A-A-C-G~G-GT-A-T-A~G-C-C-C-A~GA-A-C-C-A
CC-A-C-.-G~.-GT-A-G-T~.-.-C-T-G~CA-A-C-C-G

TA-G-C-C-G~G-.T-.-T-.~G-.-C-C-A~G.-A-A-T-G
CC-A-C-.-G~.-GT-A-G-T~.-.-C-T-G~CA-A-C-C-G



Summary of Imputation Approaches

• Off-the-shelf low-pass works amazingly well

• It could work better combined with pedigree imputation

• It could be less expensive with pedigree imputation

• The advantages of pedigree imputation are far greater if the 
entire herd or population is sequenced than if just a select few

• Low-pass captures far more genetic variation than current 
chips can



Structural Variation in Genomes

Pan-genome

Core genome

1 of the 29 autosomes



Structural Variation in Genomes

Pan-genome

Core genome

Yellow lines represent chip 
markers. Because they are 
selected for high call rate, 

almost all markers on 
current chips are probably 

in the core genome



Structural Variation in Genomes

• We are just getting started in cattle

• There is much more we don’t know than we do know

• We do know some genes that vary in copy number

• It seems likely there are at least some genes that are expressed in some animals and 
absent in others
– Such genes seem likely to contribute to functional variation

• It is likely to account for a substantial amount of the “missing heritability”

• It is detected much more effectively through long-read technology than with the 
short reads used in low-pass

• Once detected and added to reference haplotypes, it should be feasible to impute 
structural variation with short-read low-pass sequence generated now



Implementation of Low-Pass in the Germplasm 
Evaluation (GPE) Population

• Have sequenced 397 sires influential in GPE comprising 20 breeds at 2X-4X depth 
– Contribute to reference haplotypes, along with other sources

– Much of that sequence is on sire-son pairs to enhance haplotyping

• Have genotyped much of the GPE population with chips of various densities

• Have prioritized 3,000 animals for low-pass and thousands of others for additional 
low density chips
– Animals designated for low-pass are those expected to fill the most holes in the reference 

haplotypes

• Evaluate quality of imputation

• Do additional sequencing to fill most important holes

• Develop analyses to utilize the imputed sequence data to identify predictive 
markers not on the chips and improve genomic predictions



Strategy for Implementation of Low-Pass in 
Seedstock Breeding
• Begin with a collection of reference haplotypes

• Use low-pass instead of chips as it becomes cost-competitive 
or can be demonstrated to provide sufficient accuracy to 
justify cost

• Verify that concerns listed above are addressed

• Evaluate quality of imputation and accuracy of prediction

• Collect additional sequence on individuals that would most 
effectively fill the most important holes in the reference 
sequence



What Might Genomic Evaluation Look Like 
With Low-Pass Sequencing?
• Short-term

– Keep current marker sets and models until low-pass comprises a 
substantial proportion of the data

– Monitor quality of imputed genotypes for those markers



What Might Genomic Evaluation Look Like 
With Low-Pass Sequencing?
• Intermediate term

– Identify and sequence influential ancestors which, if low-pass sequenced, would 
provide imputed (through chip genotypes) sequence to the greatest number of 
phenotyped individuals

– Use non-production genetic evaluation runs to continuously screen for variants 
not in the model that have greatest predictive ability

– Continuously, but gradually, add loci with greatest predictive ability to the 
production model and drop those that are least predictive

• Include loci outside core genome

• Functional and putative regulatory SNP weighted higher than intergenic SNP

– Impute the genotypes of loci in the production genomic evaluation model not 
included on chips back to animals genotyped only with chips



What Might Genomic Evaluation Look Like 
With Low-Pass Sequencing?
• Long term

– Perhaps an hierarchical model in which:

• Part of model relates a haplotype layer to an unobserved gene activity layer informed by prior 
probabilities of variants influencing gene product function or gene expression level

• Default assumption that variants not in immediate region of gene affect gene only through their own 
gene products

• Second part of model relates gene activity layer to phenotype layer of many different traits with priors 
based on physiological gene networks and other concepts from systems biology

• Gene activity layer is not trait-specific and is informed by low-pass RNA sequencing of many tissues 
under various conditions, proteomics, metabolomics, low-pass metagenomics, and other physiological 
indicator traits; low-pass RNA sequencing replaces some of coverage requirement for low-pass 
genomic sequence

• Dominance and epistasis expressed at gene activity layer

• Reduces dimensions of parameter space and incorporates many additional sources of information 
relative to current model in which each variant is potentially and separately related to each trait.

– Many other possibilities



The p >> n Problem

• We have many times more marker effects (p = # parameters) than animals (n = # 
observations)

• It is sometimes called model overfitting

• If not accounted for, it causes predictions to appear more accurate than they are

• Many ways to deal with it; won’t cover here

• This was a serious problem in the early days of genomic EPDs based on SNP chips, 
but has become much less of a concern as several breeds now have substantially 
more animals genotyped than SNP available for inclusion in the model

• As we consider selecting markers from tens of millions of candidates, p >> n 
reemerges.

• But, our best chance to improve accuracy is to consider all variants, so we will have 
to return to dealing with p >> n.



Conclusions
• In 2015, I presented a poster arguing that successful 

widespread utilization of low-pass sequencing was dependent 
on technological advances in two areas:

– Methods for cost effective construction of sequencing libraries

– Algorithms, data structures, and software to efficiently impute low-
pass data to genomic sequence throughout populations

– Although much work remains to be done, Warren demonstrated 
substantial progress on both fronts and that low-pass is competitive

• There is far more information in an incomplete and imperfect 
view of the majority of the genome (low-pass) than there is in 
a near-perfect view of a minute fraction of the genome (chips)


