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Introduction 

 Methane (CH4) is the second most abundant anthropogenic greenhouse gas (GHG) after 

carbon dioxide (U.S. EPA, 2021). In the United States, 27.1% of CH4 emissions come from 

enteric fermentation of livestock species (U.S. EPA, 2021). Ruminant livestock species such as 

cattle, buffalo, sheep, and goats emit CH4 as part of their natural digestive process.   

 The sustainability of the beef industry is a popular topic in news and social media. In the 

beef industry, CH4 production effects all three pillars of sustainability: environmental protection, 

social equity, and economic viability. Atmospheric CH4 absorbs and emits radiant energy; this 

traps heat in the atmosphere and is why CH4 is considered a greenhouse gas (U.S. EPA, 2021). 

Social sustainability includes community and organizational resilience. Methane is related to 

global warming which can disrupt the livelihoods of people by making the environment and 

activities within it less resilient (U.S. EPA, 2021). More broadly, CH4 production is tied to the 

impact beef production has on the viability, economy, and employment of rural communities. 

Economically, CH4 production from enteric fermentation in beef cattle represents a decrease in 

efficiency for cattle production. Ruminants lose 5.5% to 6.5% of gross feed intake to enteric CH4 

production (Johnson & Ward, 1996). Thus, methanogenesis not only creates a greenhouse gas 

but is an energetically wasteful process. While CH4 production from ruminants may never be 

zero, a portion of the estimated 5.5% to 6.5% of gross energy lost instead could have been used 

by the animal for a metabolically productive process. Since methanogenesis is a part of the 

biological process that allows ruminants to upcycle forage, maintaining animal productivity 

while mitigating greenhouse gas emissions is crucial.   

  

Review of Literature 

Enteric Methane Production 

 Methane is a gas that is produced through ruminant fermentation as a part of their normal 

digestive processes. Microbes within the rumen work synergistically to convert human 

indigestible plants into short chain fatty acids and proteins (Janssen, 2010). The main products of 

fermentation are volatile fatty acids (VFAs) such as acetate, propionate, and butyrate (Janssen, 

2010). The short chain fatty acids are primarily absorbed across the rumen wall and provide the 

animal with energy which allow the animal to maintain homeostasis, reproduce, lactate, and 

grow. However, by-products are produced from the fermentation process such as hydrogen, 
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ammonia, and carbon dioxide (Janssen, 2010). Methanogenic archaea in the rumen use 

fermentation by-products to produce methane (McGovern et al., 2020). Hydrogen produced from 

the fermentation process is utilized as an energy source by methanogens to reduce CO2 to CH4 

(Hunerberg et al., 2015). Methanogens have an important digestive function in the rumen 

because they are responsible for removal of H2, which otherwise could accumulate in the rumen 

and have an inhibitory effect on fermentation rate and microbial function (Van Kessel and 

Russell, 1996; McAllister and Newbold, 2008). 

Ruminants produce methane through fermentation in both the rumen and hindgut. 

According to Murray et al. (1975), 87% of methane is produced in the rumen and 13% is 

produced in the hindgut. Methane is released from the animal three different ways: 1) methane 

produced in the rumen and hindgut is absorbed in the blood and released by expiration through 

the lungs, 2) methane is directly released by eructation, 3) methane is released from the hindgut 

in flatus (Murray et. al., 1975). Of the methane produced in the hindgut, 89% (11% of the total 

CH4 produced) is absorbed into the blood and released through expiration. Only 1-3% of total 

methane produced is released by flatus (Murray et al., 1975, Muñoz et al., 2012). The methane 

produced in the rumen is dispersed primarily by eructation and a small amount expiration 

through the lungs. Most methods to quantify gas emissions exclude the small percentage of CH4 

released in flatus and only quantify CH4 eructated and expired.   

 

Methods to Quantify Enteric Methane Production 

 Several strategies to mitigate methane emissions have been researched related to diet 

such as supplementation with fats (McGinn et al., 2004), ionophores (Appuhamy et al., 2013), 

probiotics (Ghorbani et al., 2002), nitrate (Nolan et al., 2010) and others. However, genetic 

selection is a mitigation strategy that would result in permanent and cumulative change. Large 

scale research to accurately quantify enteric methane production phenotypes is crucial for genetic 

evaluation. There are several methods to quantify CH4 production from cattle including 

prediction models, respiration chambers, the sulfur-hexafluoride tracer technique, infrared 

spectroscopy, and open-circuit gas quantification systems. Each method has distinct advantages 

and disadvantages for phenotype data collection to be used in genetic evaluations.  
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Prediction Models. Prediction models can be used to predict CH4 emissions rather than directly 

measuring emissions from animals using a quantification technique. A vast number of prediction 

models have been published with a range of different data inputs from DMI to milk production 

characteristics (Dijkstra et al., 2011; van Engelen et al., 2015, Uemoto et al., 2020; Mills et al., 

2003; Moe and Tyrrell, 1979; IPCC, 2006).  

 Measuring CH4 production is often expensive and requires complex equipment. 

However, an advantage to prediction models is that additional equipment is not required to 

estimate CH4 production (Kebreab et al., 2016). In addition, empirical prediction models are 

relatively simple and require fewer input variables than mechanistic models (Appuhamy et al., 

2016). However, there are several drawbacks to prediction models. The predictive power of the 

model depends upon the accuracy of the mathematical equation and the data inputs used in that 

equation (Kebreab et al., 2016). Errors in estimating feed intake, stoichiometry of volatile fatty 

acids, and rumen fermentation conditions were identified by Bannink et al. (2011) as the most 

likely sources of uncertainty in mechanistic models. Another disadvantage of prediction models 

is that the model assumptions may not be met in all situations, especially commercial livestock 

operations (Kebreab et al., 2016). For example, one assumption is that animals are healthy and 

not affected by environmental conditions, although this scenario is rarely true of all animals.  

 One of the biggest drawbacks to prediction models is that prediction models do not 

provide individual animal estimates distinct from differences in feed intake (Lakamp et al., 

2022). Therefore, there is no opportunity to identify and select animals which have lower CH4 

emissions than other animals at the same feed intake amount, which would be critical for genetic 

evaluation. Prediction models are probably best applied to efforts to estimate CH4 production 

from large groups of animals where mean production and feed intake are likely to be accurate for 

the entire group. In general, prediction models can be useful, especially if all necessary variables 

are readily available or quantification equipment is not available. But prediction models are less 

useful for the prediction of CH4 from individual animals, such as necessary for genetic 

evaluation, for which a gas quantification technology would be preferred.  

 

Respiration Chambers. Respiration chambers are considered the gold standard for CH4 emission 

quantification, though every system has its strengths and weaknesses. Respiration chambers are a 

whole-animal open-circuit “room” used to measure respiratory exchange and gas fluxes. 
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Inflowing air is circulated in the chamber and mixed with emitted gases. The amount of gas 

emitted is found by comparing the concentration of that gas in the inflowing and outflowing air 

(Hammond et al., 2016). One advantage of respiration chambers is that both ruminal and hindgut 

CH4 emissions are captured. Respiration chambers capture the estimated 1-3% of emissions in 

flatus (Murray et al., 1975; Muñoz et al., 2012), whereas other techniques don’t capture hindgut 

CH4.  

Respiration chambers require the animal to be pulled from their normal environment and 

housed individually which can cause changes in animal behavior and lower dry matter intake 

(DMI). For example, in a study done by McGinn et al. (2004), steers were moved from their 

normal pens outside into respiration chambers, resulting in a decrease in DMI of 15% to 19%. 

Sheep in respiration chambers have 15% to 25% lower feed intake compared to their feed intake 

the previous week in individual indoor home pens (Bickell et al., 2014). The decrease in DMI 

associated with respiration chambers is likely due to the stress of handling and their new 

environment. Animals using a respiration chamber can experience stress from relocation and 

feeding pattern disruption. A lower DMI leads to an underestimation of methane emission, which 

may be the most severe in the most stressed animals- confounding two different traits. Therefore, 

the methane production observed in a respiration chamber can be lower than the actual 

production in the animal’s normal environment, resulting in an underestimation of methane 

production of individuals and more broadly if used in a life cycle assessment, for example.  

 Additionally, respiration chambers are expensive to construct and maintain, and extensive 

labor is required for animal training and care (Johnson & Johnson, 1995; Arthur et al., 2017). 

These factors often limit the number of animals that can be measured. A sufficient sample size is 

imperative for genetic improvement studies, so these systems pose a major limitation to that 

work. Studies that use respiration chambers generally have high quality data, provided gas 

recovery tests are satisfactory, but require more time and resources to obtain a sufficient sample 

size compared to other techniques.   

 

Sulfur-hexafluoride tracer technique. The sulfur-hexafluoride (SF6) tracer technique was one of 

the first techniques developed to measure gas emissions in an open-air environment without 

confinement (Zimmerman, 1993). An inert bolus containing liquid SF6 is placed in the rumen of 

the animal. The SF6 is slowly released from the bolus in gaseous form through permeations in the 
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bolus at a known rate. The animal wears a halter with a capillary tube that is connected to an 

evacuated sample container on its back or an inflatable neck collar. The vacuum in the sampling 

container collects the metabolic and tracer gas from the nose and mouth. After the trial, CH4 and 

SF6 concentrations are determined using the known permeation rate of SF6 from the bolus and the 

mixing ratio of gases collected in the sampling container (Zimmerman, 1993).  

 The advantage of the SF6 tracer technique is that animals are not restrained or enclosed in 

a chamber (Gunter and Beck, 2018). Although, there are several disadvantages of the SF6 tracer 

technique. The SF6 tracer technique does not account for CH4 released as rectal flatus (Gunter 

and Beck, 2018; Murray et al., 1975). Another disadvantage is that extensive labor is required. 

The animals must be trained to wear the halter and the sampling container, which is laborious 

(Gunter and Beck, 2018). In addition, labor is required to insert the bolus into the animal’s 

rumen. For these reasons, this technique is typically only used in short duration with a small 

number of animals, which limits possible applications for genetic improvement.  

 

Infrared spectroscopy. Infrared spectroscopy is a method to measure CH4 primarily used in dairy 

cattle. One type, Fourier transform infrared (FTIR), uses infrared transmission spectrum to 

identify an absorbance spectrum from an air sample (Teye et al., 2009). Then gas densities can 

be calculated for each sample using the absorbance spectrum. Another infrared spectroscopy 

method of gas quantification is based on mid-infrared spectra. Infrared spectroscopy methods 

have the advantage that they are non-invasive, and animals can remain in normal production 

environments during collection. However, measurements are highly variable and require several 

hundred measurements during a short period of time to quantify individual animal means 

(Lassen & Løvendahl, 2015). This is one reason why this method is primarily only used for dairy 

cows, because the data can be collected during times of feeding or milking.  

 

Open-circuit gas quantification systems. An open-circuit gas quantification system (OCGQS) is 

an automated technology that quantifies gas fluxes by exhausting air past an animal’s head and 

into the system while the animal is eating a small amount of bait feed (Hristov et al., 2015). The 

GreenFeed system (C-Lock, Inc., Rapid City, South Dakota) is currently the only OCGQS 

product on the market for commercial use. The OCGQS entices animals to visit the unit multiple 

times a day by releasing a small amount of pelleted feed as bait. Individual animals insert their 
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head into the hood and the OCGQS measures gas fluxes as air is continuously drawn past the 

head of the animal. The OCGQS collects several short-term breath samples throughout the day to 

calculate gas production rates (Herd et al., 2020). Measurements are an accumulation of spot 

samples, unlike the continuous sampling of respiration chambers and the SF6 technique.  

One of the main advantages of the OCGQS is that data can be collected on grazing 

animals in a pasture setting. It is ideal for CH4 emissions of grazing animals to be measured 

during grazing so that estimates are representative of diet and grazing behavior (Waghorn et al., 

2016). Another advantage of the OCGQS is that animals are unencumbered by respiration 

equipment or respiration chambers and do not require extensive training.  

A disadvantage of the OCGQS system is that spot samples throughout the day are 

combined to calculate the daily CH4 production, as detailed in Huhtanen et al. (2015). One 

concern with the OCGQS is if the spot samples throughout the day capture the variation in CH4 

emissions due to circadian rhythms. Hammond et al. (2016) recommended that a sufficient 

number of samples and with adequate sample length is included in the sampling protocol to 

account for diurnal variation of emissions.  

 

Phenotypic Methane Production Traits  

After CH4 is quantified by one of the various methodologies, several CH4 phenotypic 

traits can be calculated (Table 1). Individual animal CH4 production expressed on a daily basis is 

referred to as methane production or methane production rate (MPR) which is simply the amount 

of CH4 produced by an animal per day. In an effort to account for animal productivity, other 

phenotypic ratio traits have been developed. Methane yield (MY) is the ratio of CH4 (g) over a 

unit of feed intake, usually DMI (kg). Methane intensity (MI) is the ratio of CH4 (g) over a unit 

of animal product. In beef cattle, MI is typically expressed over a weight measurement while for 

dairy cattle, MI typically includes a milk production trait. Additionally, several residual methane 

phenotypes have been developed. Residual methane production (RMP) is the actual MPR minus 

the expected MPR. The difficulty with RMP is calculating expected MPR which is commonly 

done using published regression equations usually including DMI (Blaxter and Clapperton, 1965; 

Johnson et al., 1995; IPCC, 2006; Kennedy et al., 1993; Dijkstra et al., 2011; de Haas et al., 

2011).  
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Genetic Parameters  

 All CH4 quantification methodologies discussed could be used to collect phenotypes for 

genetic evaluation. While some methodologies have distinct advantages, they all have challenges 

of phenotype collection for the purposes of genetic evaluation. Collection of a sufficient number 

of phenotypes for genetic evaluation is expensive, time-consuming, laborious, and requires 

proper contemporary grouping. Therefore, estimates of heritability and genetic parameters for 

CH4 production in literature are fairly sparse for beef cattle (Table 2).   

Hayes et al. (2016) derived genomic estimated breeding values (GEBV) for CH4 traits 

from a reference set of 747 Angus cattle with a validation set on 273 additional Angus cattle. All 

animals in this study were born and raised on pasture, except for the period of CH4 measurement 

where they were fed a roughage diet consisting of alfalfa and oaten hay chaff in the respiration 

chamber. Methane production rate, MY, and four RMP traits were measured in respiration 

chambers. The estimated genomic heritability derived from only genomic information for MPR 

was 0.28 ± 0.06 and 0.20 ± 0.05 for MY (Hayes et al., 2016). Hayes et al. (2016) reported 

moderate accuracies of GEBV calculated from genomic BLUP for MPR and MY (0.32 ± 0.04 

and 0.37 ± 0.09, respectively). 

Manzanilla-Pech et al. (2016) estimated heritabilities for a variety of CH4 traits on 1,020 

Angus beef cattle (partially the same animals as Hayes et al. 2016) collected utilizing respiration 

chambers and in two validation populations of Holstein dairy cows collected with the SF6 tracer 

technique. The CH4 traits evaluated for the Angus population were MPR, MY, MI, residual 

phenotypic methane (RPM), and residual genetic methane (RGM). Residual phenotypic methane 

and RGM were calculated based on the residual phenotypic and genetic regressions of a 

trivariate analysis of MPR, DMI and weight. The estimated heritabilities for MPR, MY, MI, 

RPM, and RGM in the Angus population were 0.30 ± 0.06, 0.20 ± 0.05, 0.25 ± 0.06, 0.19 ± 0.05, 

and 0.15 ± 0.05, respectively (Manzanilla-Pech et al., 2016). Heritabilities for the Holstein 

population were only evaluated for 3 CH4 traits and different values were found. The estimated 

heritabilities for MPR, MY, and MI were 0.23, 0.30, and 0.42, respectively (Manzanilla-Pech et 

al., 2016). It is unknown whether the difference in heritability estimates was due to genetics or 

the smaller population size and higher associated standard errors (approximately 0.23). The 

authors concluded that CH4 is a moderately heritable trait, and several factors need to be 

evaluated to determine which trait is the “best” measure of CH4 emissions.  
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 Donoghue et al. (2016) found genetic and phenotypic variance and covariance estimates 

for CH4 emission traits. Using largely the same animals as Manzanilla-Pech et al. (2016) and 

Hayes et al. (2016), this study included data on Angus 1,046 animals that were born and raised 

on pasture. Methane emissions were measured in a respiration chamber for two days while 

animals ate a roughage-based diet. The traits evaluated were MPR, MY and 4 residual methane 

production traits as well as production traits such as birth weight (BW), weaning weight (WW), 

yearling weight (YW), final weight (FW). Carcass traits such as ultrasound measures of eye 

muscle area (EMA), rump fat depth, rib fat depth, and intramuscular fat were also included. One 

objective of this study was to estimate phenotypic and genetic correlations between the CH4 and 

production traits (Donoghue et al., 2016). Donoghue et al. (2016) estimated the heritability of 

MPR and MY to be 0.27 ± 0.07 and 0.22 ± 0.06, respectively. All four forms of RMP had an 

estimated heritability of 0.19. Methane production rate and MY had a phenotypic correlation of 

0.68 ± 0.02; this indicates that animals with high MPR also have high MY. Donoghue et al. 

(2016) hypothesized that reducing MY will not impact DMI because the two traits are not 

genetically correlated (-0.04 ± 0.18), however reducing MY will have a correlated effect on 

MPR because the two traits have a strong genetic correlation (0.50 ± 0.14). Interestingly, 

Donoghue et al. (2016) found that MPR had a weaker phenotypic correlation with BW (0.26 ± 

0.04) than later in life growth traits such as WW (0.53 ± 0.03), YW (0.61 ± 0.03), and FW (0.56 

± 0.03). Genetic correlations between MPR and production traits were moderate to strong: BW 

(0.36 ± 0.18), EMA (0.40 ± 0.16), WW (0.84 ± 0.09), YW (0.86 ± 0.06), and FW (0.79 ± 0.08; 

Donoghue et al., 2016). Donoghue et al. (2016) speculated that the strong genetic correlations 

between MPR and animal weight traits is likely due to the strong association between MPR and 

DMI. This means that reducing MPR will have a correlated reduction in animal weight for the 

progeny. Instead, the authors proposed the mitigation strategy of selecting for reduced MY or 

residual methane because it should reduce CH4 production without a negative effect on DMI 

(Donoghue et al., 2016).  

 Although dairy cattle are different from beef cattle in many ways, heritability estimates 

from dairy cattle can give insight into beef cattle. Three CH4 phenotypes including CH4:CO2 

ratio, CH4 production (g/d) measured over a week, and CH4 intensity (g CH4/L milk produced), 

were measured for 3,121 Holstein dairy cows using an automatic milking system and FTIF 

detection (Lassen & Løvendahl, 2015). Both CH4 production and CH4 intensity had heritabilities 



10 
 

of 0.21 ± 0.06 and CH4:CO2 ratio had a heritability of 0.16 ± 0.04 (Lassen & Løvendahl, 2015). 

Methane production and CH4:CO2 ratio had strong genetic correlations to fat- and protein-

corrected milk yield, (0.43 ± 0.10 and 0.37 ± 0.07 respectively; Lassen & Løvendahl, 2015). 

These estimates suggest that CH4 production in dairy cattle is a heritable trait and that a strong 

genetic potential for milk production could be related to greater CH4 emissions.  

 van Engelen et al. (2015) used milk composition information (milk fatty acid profile) in 

three different MY prediction equations to estimate MY of 1,905 Holstein-Friesian cows. The 

heritability estimates from the three different equations for CH4 yield were 0.12 ± 0.06, 0.20 ± 

0.07, and 0.44 ± 0.10 (van Engelen et al., 2015), suggesting methane yield based on milk fat 

composition is heritable.  

 Pickering et al. (2015) used feed intake, milk yield, live weight, and body condition 

scores to predict CH4 emissions of 1,726 dairy cows. Predicted methane emissions (PME) was 

calculated daily from morning and evening milkings then averaged for each week of lactation. 

PME (g/d) had a mean heritability of 0.13 ± 0.04 across 44 weeks of lactation (Pickering et al., 

2015). The heritability of PME stayed relatively stable across the 44 weeks of lactation 

measured. Pickering et al. (2015) also used a laser CH4 detector to obtain repeated measurements 

from 57 cows. The repeatability of emissions from the laser CH4 detector within lactation was 

0.07 ± 0.08 and across lactations was 0.03 ± 0.08. The authors speculated that the low 

repeatability associated with the laser CH4 detector was associated with the small sample size. 

Therefore, the laser CH4 detector was found to not be suitable for genetic prediction due to low 

repeatability and difficulty in obtaining a sufficient sample size (Pickering et al., 2015). 

 Methane emissions were predicted from feed intake, milk and body weight data on 548 

Holstein-Friesian heifers (de Haas et al., 2011). Predicted CH4 emissions gradually increased 

throughout lactation until it reached a plateau around 400 g/d in mid-lactation until the end of 

lactation (de Haas et al., 2011). de Haas et al. (2011) estimated that PME had a heritability of 

0.35 ± 0.12 for week 0 through week 42 of lactation. Heritabilities estimates varied between 

weeks of lactation from 0.29 to 0.42 with standard errors ranging from 0.10 to 0.12 (de Haas et 

al., 2011). Feed intake data collected from automated feeders was used to calculate RFI and 

DMI. Predicted CH4 emissions had a strong positive phenotypic correlation with RFI, indicating 

that animals with lower RFI also would have lower PME (de Haas et al., 2011).   
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 Kandel et al. (2017) studied two milk mid-infrared based CH4 proxies: PME and log-

transformed CH4 intensity (LMI). The fatty acid profile was predicted using mid-infrared 

spectrometry and then an equation developed by Vanlierde et al. (2015) was used to find PME 

given the mid-infrared milk information (Kandel et al., 2017). Log-transformed CH4 intensity 

was found by log-transforming the ratio of PME over daily methane yield. Kandel et al. (2017) 

studied both first (n = 56,957) and second (n = 34,992) parity cows. The heritability of PME was 

moderate and slightly decreased from first to second lactation, 0.25 ± 0.01 and 0.22 ± 0.01, 

respectively (Kandel et al., 2017). The heritability of LMI was 0.18 ± 0.01 for first lactation and 

0.17 ±0.02 for second lactation (Kandel et al., 2017). Between first and second lactation, PME 

increased (433 g/d vs. 453g/d) while LMI decreased (2.93 vs. 2.86; Kandel et al., 2017). The 

authors suggested that the rankings of animals were similar between the two lactations based on 

the high Spearman correlation values for PME and LMI, 0.92 and 0.95 respectively (Kandel et 

al., 2017). Kandel et al. (2017) explained that the differences in values observed between first 

and second lactation were due to changes in feed intake, feed efficiency, energy partitioning, and 

milk production. Although PME is lowly heritable, it is a problematic trait to use for genetic 

selection. Predicted methane is calculated using various component traits, therefore those 

component traits change with selection rather than directly selecting for CH4.  

 Although a different species, sheep are grazing ruminant animals that also produce CH4. 

Sheep are typically less expensive to manage and are easier to handle, offering a potential proxy 

for cattle in CH4 emissions research. Robinson et al. (2010) evaluated 708 grazing ewes for 1-

hour CH4 emissions using a sealed polycarbonate booth. The heritability of 1-hour CH4 

production (dL/hour) after adjustments for live weight was 0.13 with a repeatability of 0.32 

(Robinson et al., 2010).  

 Pinares-Patiño et al. (2013) measured MPR and MY from 1225 sheep in respiration 

chambers. The heritability of MPR and MY was 0.29 ± 0.05 and 0.13 ± 0.03, respectively 

(Pinares-Patiño et al., 2013). Measurements in respiration chambers were repeated 14 days later 

to assess repeatability. Methane production and MY had repeatabilities of 0.55 ± 0.02 and 0.26 ± 

0.02, respectively (Pinares-Patiño et al., 2013). The results of this study indicate that CH4 

emission traits are heritable and repeatable for sheep. 
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Conclusions and Implications to Genetic Improvement of Beef Cattle 

Methane is a potent greenhouse gas with adverse effects on the environment due to the 

warming potential of the atmosphere (U.S. EPA. 2021). Enteric fermentation from ruminant 

animals is a source of CH4 production and represents an energetic loss for that animal (Johnson 

& Ward., 1996). Several methods exist to quantify CH4 emissions from cattle, including 

respiration calorimetry, the sulfur-hexafluoride tracer technique, prediction models, infrared 

spectroscopy and OCGQS. Each of the methodologies have advantages and disadvantages and 

some methodologies are better suited for collecting phenotypes for genetic evaluation than 

others. 

The goal is to reduce CH4 emissions from beef cattle to optimize productivity and 

profitability with sustainability. However, CH4 production is a natural ruminant digestive process 

that allows cattle to digest and ferment human non-edible plant material. Therefore, it is vital that 

selection strategies incorporate the optimum balance between CH4 production and animal 

productivity, as maximum productivity and minimum emissions are likely incompatible.  

High feed intake is associated with high MPR in ruminants (Blaxter & Clapperton, 1965). 

Production traits such as growth are highly correlated with feed intake (Arthur et al., 2001). 

Therefore, reducing MPR could have an unfavorable impact on animal productivity due to the 

correlation with feed intake. Herd et al. (2014) evaluated several ways to measure CH4 including 

MPR, MY, and four forms of RMP. Herd et al. (2014) estimated the phenotypic relationships 

between the CH4 traits and the production traits. MPR was positively correlated with DMI, MY, 

RMP, growth traits, and body composition traits (0.65 ± 0.02; 0.72 ± 0.02; 0.65 to 0.79; 0.19 to 

0.57; 0.13 to 0.29). However, MY was not correlated with DMI, growth traits, or body 

composition traits (-0.02 ± 0.04; -.03 to 0.11; 0.01 to 0.06). All four forms of RMP were strongly 

correlated with MY (0.82 to 0.95; Herd et al. 2014). These results suggest that reducing MPR as 

a mitigation strategy would have a negative impact on growth and body composition traits. 

However, MY was not correlated with DMI, but was positively correlated with MPR. This 

indicates that reducing MY would have no effect on DMI or animal productivity but would have 

a correlated reducing effect on MPR. Considering the undesirability of a ratio trait for genetic 

evaluation, one of the RMP traits could be used instead of MY. Additionally, an RMP trait 

independent from DMI may be the best trait to incorporate into selection strategies (Herd et al. 

2014). The correlations from Herd et al. (2014) are phenotypic correlations therefore, future 
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research on the genetic relationships between these traits and growth traits is needed to decide 

which CH4 trait should be incorporated into selection strategies.  

 Development of a selection index for CH4 production may be the most advantageous 

mitigation strategy. A well-constructed index with properly weighted traits would allow for 

optimum selection to reduce CH4 production without compromising important production traits, 

such as DMI. One of the biggest difficulties of selection indexes is assigning the appropriate 

economic weighting to each trait in the index. Currently, the economic value of enteric CH4 

emissions is unknown and the price of carbon is not globally realized (Lakamp et al., 2022). 

Further research is required in this area to define economic values for CH4 production and 

evaluate its weighting in a selection index. Additionally, continued CH4 phenotype data 

collection is needed for large-scale genetic evaluations to establish genetic correlations between 

CH4 production and other economically important traits (LaKamp et al., 2022). This would allow 

for the construction of a properly weighted selection index to reduce CH4 without economic 

losses from reduced performance.   
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Table 1- Definitions of phenotypic methane traits 

Methane Trait Definition 

Methane production rate CH4 (g) / d 

Methane yield CH4 (g) / unit of feed intake 

Methane intensity CH4 (g) / unit of animal product 

Residual methane production Actual CH4 (g) – expected CH4 (g) 
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Table 2- Heritability estimates of methane production traits in beef and dairy cattle.  

Trait Heritability ± SE Citation 

Methane production (g/d) 0.28 ± 0.06 Hayes et al. 2016a 

Methane yield (g/kg DMI) 0.20 ± 0.05 Hayes et al. 2016 

Residual methane productionB1 0.19 ± 0.06 Hayes et al. 2016 

Residual methane productionJ2 0.19 ± 0.05 Hayes et al. 2016 

Residual methane productionI3 0.19 ± 0.05 Hayes et al. 2016 

Residual methane productionR4 0.19 ± 0.05 Hayes et al. 2016 

Methane production (g/d) 0.30 ± 0.06 Manzanilla- Pech et al. 2016a 

Methane yield (g/kg DMI) 0.20 ± 0.05 Manzanilla- Pech et al. 2016 

Methane intensity (g/ kg weight) 0.25 ± 0.06 Manzanilla- Pech et al. 2016 

Residual phenotypic methane5 0.19 ± 0.05 Manzanilla- Pech et al. 2016 

Residual genetic methane6 0.15 ± 0.05 Manzanilla- Pech et al. 2016 

Methane production (g/d) 0.27 ± 0.07 Donoghue et al. 2016a 

Methane yield (g/kg DMI) 0.22 ± 0.06 Donoghue et al. 2016 

Residual methane productionB1 0.19 ± 0.06 Donoghue et al. 2016 

Residual methane productionJ2 0.19 ± 0.06 Donoghue et al. 2016 

Residual methane productionI3 0.19 ± 0.06 Donoghue et al. 2016 

Residual methane productionR4 0.19 ± 0.05 Donoghue et al. 2016 

Methane production (g/d)  0.21 ± 0.06 Lassen & Løvendahl, 2015b 

Methane intensity (g/ L milk) 0.21 ± 0.06 Lassen & Løvendahl, 2015 

CH4:CO2 0.16 ± 0.04 Lassen & Løvendahl, 2015 

Predicted methane yield (g/kg DMI)7 0.12 ± 0.06 van Engelen et al. 2015b 

Predicted methane yield (g/kg DMI)8 0.20 ± 0.07 van Engelen et al. 2015 

Predicted methane yield (g/kg DMI)9 0.44 ± 0.10 van Engelen et al. 2015 

Predicted methane emissions (g/d)10 0.13 ± 0.04 Pickering et al. 2015c 

Predicted methane emissions (g/d) 0.35 ± 0.12 de Haas et al. 2011b 

Predicted methane emissions (g/d)11 0.25 ± 0.01 Kandel et al. 2017b 
1using Blaxter and Clapperton (1965) equations. 
 2using Johnson et al. (1995) equations. 
3using International Panel on Climate Change (2006) equations. 
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4expected methane production obtained by the regression of methane production rate on DMI. 
5using Kennedy et al. (1993) equations for the residual phenotypic regressions of a trivariate 
analysis of MPR, DMI and weight. 
6using Kennedy et al. (1993) equations for the residual genetic regressions of a trivariate analysis 
of MPR, DMI and weight.  
7using Dijkstra et al. (2011) equations.  
8using Dijkstra et al. (2011) equations excluding fatty acids with a difference >40% between data 
sets. 
9using Dijkstra et al. (2011) equations excluding fatty acids with a difference >40% between data 
sets and with concentrations <1 g/100 g fat.   
10using de Haas et al. (2011) equations.  
11using milk mid-infrared spectrometry in first lactation and Vanlierde et al. (2015) equations.  
aAngus cattle. 
bHolstein dairy cattle 
cdairy cows 
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