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dgasii How much data goes into EPD calculations?

9.6M BW 2.6M US
10.1M WW 131k CR
4.9M PWG 34K FI

_11M animals.

* Predicting things is very hard
* Gather enough data
e Use the right statistical tools ]






Goal: Keep improving

Reducing More Not Not Increase
environment efficient and competing competing animal
Impact healthier for water with human protein
animals resources food production
rereqi4 Frereq s Prereq 2 rrereq | Ultimate Goal

https://www.progressivedairy.com/topics/a-i-breeding/improved- P —
genomic-selection-for-health-and-other-traits



Why is genomic info helpful?




(Y i Why does genomicinfo work?

Phenotypes Pedigree Genotypes



Changes after genomics - beef

Standardized genetic progress before and after the implementation of genomics
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G Changes after genomics - pigs
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Changes after genomics - dairy

e > 2x after genomics for Holsteins

Holstein Holstein Bulls Guinan et al.
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Average PBV - Fat Yield (kg)
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Adoption: 2013 vs 2009
Genotypes: 16k vs. 5.5M

Benefits depend on the level of adoption
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Changes after genomics - dairy
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# Genotyped Animals

5,595

Massive uptake of genomicsin 15 years
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dgasii Genotypes work together with phenotypes

* Genotypes do not replace phenotypes...they work together

Impact of eliminating all US carcass records from 2010

Greater than 30% accuracy decrease in Ultrasound
EPDs on young genotyped sires with record elimination

Average Ultrasound EPD accuracy decrease on genotyped sires born after 2017
(n=4.479)
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dgasii Genotypes work together with phenotypes

Genomics
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Gainin accuracy in GEPDvs. EPD
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gasics - New technologies / sources of info

* Whole-genome sequence
* Phenomics
° Self-tracking sensors and cameras e More accurate EPD for Mmany traits

* Gut microbiome * Improve farm animal populations
* Blood work (metabolites)
* Enviromics (better characterization of the environment)

Genetic evaluation including intermediate omics

features

Predicting Growth and Carcass Traits in Swine Using '"tT-DSi.-'.-'d:OI‘orF_l:"'-G"-G')3'3.-".=_leﬂe;-w—-:-‘r-;ﬁh'_i%'l - }

Selecting sequence variants to improve genomic Microbiome Data and Machine Learning Algorithms
predictions for dairy cattle Christian Maltecca &, Duc Lu, Constantino Schillebeecky, Nathan P. McNuity, Clint Schwab, Caleb Shull & (A) (8) c)
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“Whenever new technologies generate different
data, we need to make the most out of that”



* Whole-genome sequence

* Phenomics

 Self-tracking sensors and cameras
* Gut microbiome
* Blood work (metabolites)

e Enviromics



Whole-genome sequence

Gain %
110

50k SNP may not be enough

* We should use sequence data
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s Whole-genome sequence for GEPD

* Prediction accuracy = cor(DEBV, GEBV)
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desiei— Other uses for whole-genome sequence

 Genomic predictions

* Flexibility — change the SNP panel at any time
* Genetic architecture of traits
* New mutations

* Problematic haplotypes

$100 - S200 per sample



Phenomics

e High-throughput phenotyping (phenomics) — computer vision systems (CVS)
e Sensors and cameras
e Collecting data 24/7
* Feedintake, grazing behavior
* Fertility, welfare, resilience
* Temperature, gas emission

Misztal (1986)

Phot. 1. Photos of a the heifer before being processed by the picture processing system

S S

Rocz. Nauk. Zoot. T. 13, 5. 2 (1986) 9-15

Phot. 2. Photos of a the heifer after being processed by the picture processit

1g system

ESTIMATION OF CARCASS COMPOSITION IN LIVE CATTLE
USING PICTURE PROCESSING SYSTEM

Ignacy Misztal
Institute of Cattle Breeding and Milk Production Warsaw Agricultural University — SGGW-AR
Carcass composition in live cattle was evaluated using picture processing system and

silhouette analysis. The accuracy of this evaluation was comparable to evaluation
using measurements obtained manually, and the new method could be fully automated.
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Phenomics

Guilherme
Rosa (UW)
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Cominote et al., 2020 —
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Joao Dorea
(UW)



e Phenomics

3D Body Shape: Predicting Ribeye Area and Shape of Live Calves @
v(‘)
*Beef semen has been used in genetically inferior |
cows to produce crossbred (beef x dairy) animals Guilherme
Rosa (UW)

*Very important source of income for dairy
farmers

* Frequently reported as lacking quality and shape
uniformity

Dairy Steer Beef Steer

Joao Dorea
(UW)

Source: Angus Beef Bulleting Caffarini et al., 2022 — (under-review)




kot Is using phenomics a reality?

* Machine learning
 Artificial intelligence
* Algorithms to automatically learn from the data and make predictions

* Limitations
* Requires new on-farm devices and large data storage
* Expensive to teach a machine (computing resources and time)
* Image recognition comes with an appetite for computing poOwWer (thompsonetal, 2020)

“Computing limitations have a short lifespan”



kot Is using phenomics a reality?

e Where are we at now?
e Collecting data

* Learning how to extract the most important features

* Implications
* Trait definitions may change
* New traits in the evaluation system

e Reality within 5 years



v
N
/
l,b m
g U
e, N’ [/
'Q‘__ V4
”

y

16;"‘)
|
¢
/

J. Lourenco’s team at Leo McDonnell’s Ranch



e Microbiome information

b Shannon Index

mHigh-RF1 mLow-RFI
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J. Lourenco (unpublished)

* Genomic testing from animals and microbial diversity index as a trait
* Microbiome is used as a proxy trait -> should we collect microbiome info or RFI

 Host-microbiome interaction: Genomic testing for animals and microbes into evaluations



desei - Microbiome —under investigation

e Connection between microbiome and several traits

* Can microbiome replace Fl recording?

* How to include microbiome info into genomic evaluations? 9

 Samples on 1500 animals

e Beef cattle data




Is using microbiome a reality?

* Where are we at now?

e Collecting data

* Learning how to use this information

 Still unclear how helpful it can be

* S40 per sample + sampling costs by trained personnel
* Implications

* New traits in the evaluation system

* More complex models
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Metabolites

Metabolite profile

Intermediate omics data

gene mMRBNA protein metabolite

genomics transcriptomics proteomics metabolomics

100s of metabolites available for < S15
How to include this information for genomic evaluations?

* Index? Correlated trait? Similarity matrix?

Integrative analyses of genomic
and metabolomic data reveal
genetic mechanisms associated
with carcass merit traits in beef
cattle

Jiyvan Li%, Yining Wang™?, Robert Mukiibi?, Brian Karisa“, Graham S. Plastow’™ &
Changxi Li¥?*



@i Metabolites — under investigation

e Statistical methods
 Metabolites
* Function annotation
 Sequence data

 GP in commercial pig data




Is using metabolites a reality?

* Where are we at now?
e Collecting data
* Learning how to use this information

 Still unclear how helpful it can be

* Implications
* New traits in the evaluation system

* More complex models



aesicin Enviromics

USDA Integrating Enviromics, Genomics, and Machine Learning for Precision
p— Breeding of Resilient Beef Cattle (USDA AFRI 2023-68014-39816)

[ Savanna (Aw) Humid subtropical (Cfa) [] Mediterranean (Csa)
[ Semi-arid (BSk) [ ©ceanic (Cfb) [] Humid continental (Dfa)
[] Desert (BWh) [l Humid continental (Dfb) [ Alpine (ET/H)

PI: Guilherme Rosa (UW-Madison)



aesicin Enviromics

FOX 2 now
NATIONAL

At least 2,000 cattle die after * Top priority of the USDA stakeholders
extreme heat bakes Kansas

by: Hannah Ad xstar Media Wire
Posted: Jun 17, 7 PM CDT
Updated: Jun 1 07 PM CDT

GxE

Courtesy of:
Guilherme Rosa




aesicin Enviromics

Farm management

input layer hidden layer 1 hidden layer 2 output layer

Data analytics

2 %
fs

H
fREEonaitan iRt

Soil, climate, and

" 9K+ herds (1970-2020) weather information ), P
9.3M+ birth weights 1 2 ¢
9.8M+ weaning weights ) 1

QGI <4 4.8M+ post-weaning weight gain

126K+ heifer pregnancy &
full pedigree information Forage density
1M+ genotypic information and quality Extension and outreach

 Statistical methods for precision breeding
e Best animals for each production system/environment



kot IS enviromics a reality?

* It's a reality in plant breeding, not in animal breeding
* Animal breeding — only temperature and humidity

* Dairy cattle evaluations — Australia

* Pig evaluations — one company in the USA

* Where are we at now?

e Collecting data

* Learning how to process and use this information
* Implications

* More complex models



Final remarks

Phenotypes Pedigree Genotypes

WGS Phenomics Microbiome Metabolites Enviromics



e Final remarks

 Why are we investigating new sources of information?

* Increase accuracy of GEPD

* How can new sources of data impact current genomic evaluations?
* More data and computational challenges
* Weekly evaluations may become outdated

 What will change for beef cattle producers?
* Will collect more data
* Price of new technologies always decrease with time

* More accurate GEPD for better decisions and improved AG



e Final remarks

\ How much you trust

the geneticists
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