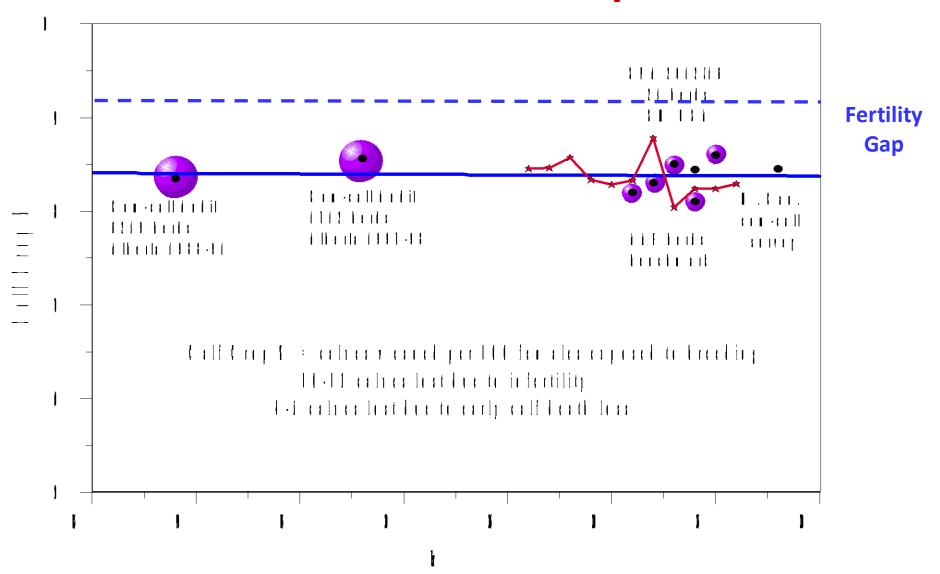


gentec


NON-ADDITIVE GENETIC EFFECTS

Use in replacement heifer selection

JA Basarab, T. Valente, C. Li, G. Plastow

Beef Improvement Federation, 5 July 2023 Calgary, Alberta

TREND: Calf crop % has remained constant at 83-85% over the last 25-30 years

Crossbred Cow-Calf herds in western Canada

TREND: Steady decline in heterosis due to single breed use since early 2000s

- **❖** Measured using genomic breed composition and retained heterozygosity
- **❖** Heterosis is proportional to heterozygosity
- **❖** Heterosis increases fertility, longevity and lifetime productivity by 20-30%.
- **❖** > 40% of cows & calves would benefit from a 30% increase in heterosis (n>14,000)

Relative Value of traits to the cow-calf sector

Fertility traits

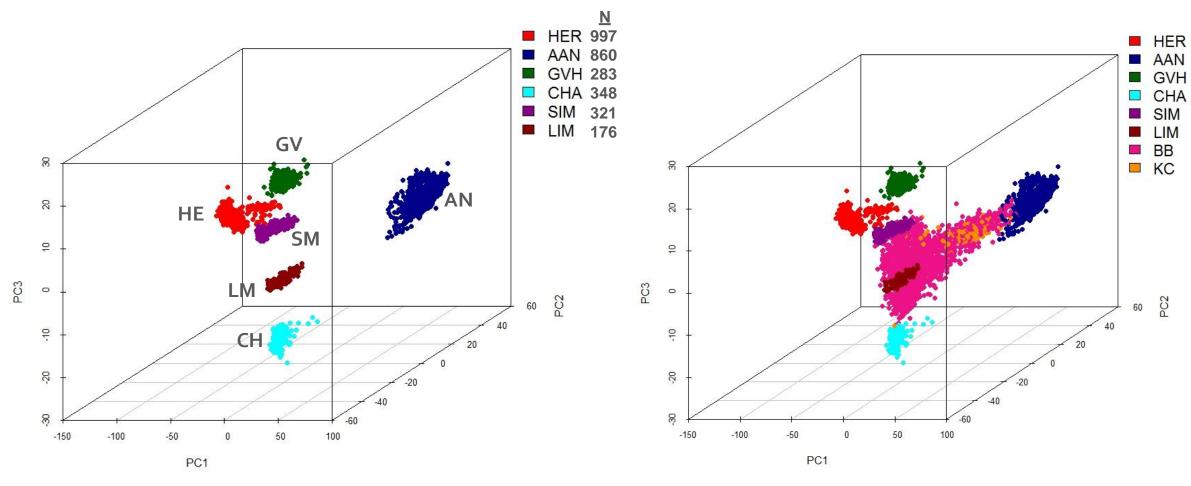
Heifer pregnancy
Cow pregnancy
Days in the herd
Lifetime productivity
Survival 1st to 5th parity
Stayability
Longevity

Growth traits

2

Birth weight
Calving ease
Weaning weight
Pre-wean gain
Yearling weight
Feedlot gain
Feed efficiency

Carcass traits


1

Back fat thickness Ribeye area Marbling Lean meat yield Tenderness Hot carcass weight

Heritability (additive genetic effect)

Heterosis (heterozygosity, non-additive genetic effect)

Genomic breed composition

Population structures identified by principal components using 50K for purebred Canadian beef cattle (Abo-Ismail et al. 2016)

Population structures identified by principal components using 50K including composite animals (BB = 2029 cattle, Abo-Ismail et al. 2016)

Genomic breed composition

Reference Data Set-14 breeds (n=5,520; Li et al. 2020)

Numbers of purebred animals in the refined breed composition prediction panel					
Breed					
Charolais	465				
Simmental	267				
Hereford	657				
Red Angus	626				
Black Angus	1465				
Limousin	161				
Gelbvieh	179				
Salers	133				
Maine Anjou	134				
Shorthorn	684				
Holstein	322				
Brown Swiss	163				
Jersey	163				
Galloway	101				
Total	5520				

Genomic breed composition

D6574

Angus = 52.9% = 39.6% Simmental Charolais = 5.9% **Others** = 1.6%

RFI-fat = -0.02

Hybrid Vigor Score = 55.9%

Genomic indicator of heterosis

n breeds RHET = $1 - \sum_{i}^{2} p_i^2$

ARTICLE

Genomic retained heterosis effects on fertility and lifetime productivity in beef heifers

J.A. Basarab, J.J. Crowley, M.K. Abo-Ismail, G.M. Manafiazar, E.C. Akanno, V.S. Baron, and G. Plastow

Abstract: This study evaluated the effects of three genomic indicators of heterosis on female fertility and lifetime productivity, and quantified changes over 11 production cycles in a crossbred cow herd. Pedigree-based breed composition (pBC) was determined and used to calculate retained heterozygosity for 412 replacement heifers born from 2004 to 2014 at the Lacombe Research and Development Centre (AB, Canada). Heifers were followed as cows over 1050 mating opportunities, 11 production cycles, and five parities. Heifers and their sires (51) were genotyped and these genotypes were used to predict each animal's genomic breed composition (gBC) and three genomic indicators of heterosis: (1) retained heterozygosity (RHETg), (2) heterozygous proportion (H), and (3) retained heterosis (RHg). Correlations between pedigree and genomic breed fractions for Angus, Hereford, and Charolais were high ($r_p = 0.74-0.94$; P < 0.001). Genomic indicators of heterosis were highly related ($r_p = 0.61$ for RHETg vs. H; 0.71 for RHg vs. H; 0.96 for RHETg vs. RHg; P < 0.001). Each 10% change in RHETg resulted in 51 ± 20 d longer survival (P = 0.011) in the herd and 35.7 ± 15.2 kg more (P = 0.019) calf wean weight per cow exposed to breeding when summed over five parities. These differences resulted in an extra \$161 per heifer in a year. Optimizing heterosis using genomic tools can be very beneficial for the cow herd if applied correctly.

Canadian Journal of Animal Science, https://doi.org/10.1139/CJAS-2017-0192

Hybrid Vigour Score

Linear effects of genomic retained heterozygosity

200-d weaning weight

Age at first calving

+3 lb/10% change

-2 days/10% change

Pregnancy rate

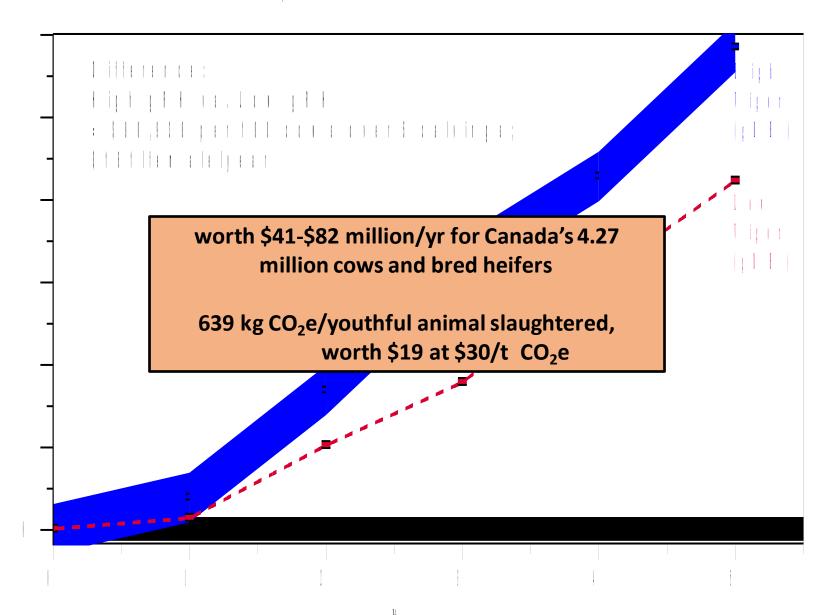
Weaning rate

Lifetime productivity

Days in the herd

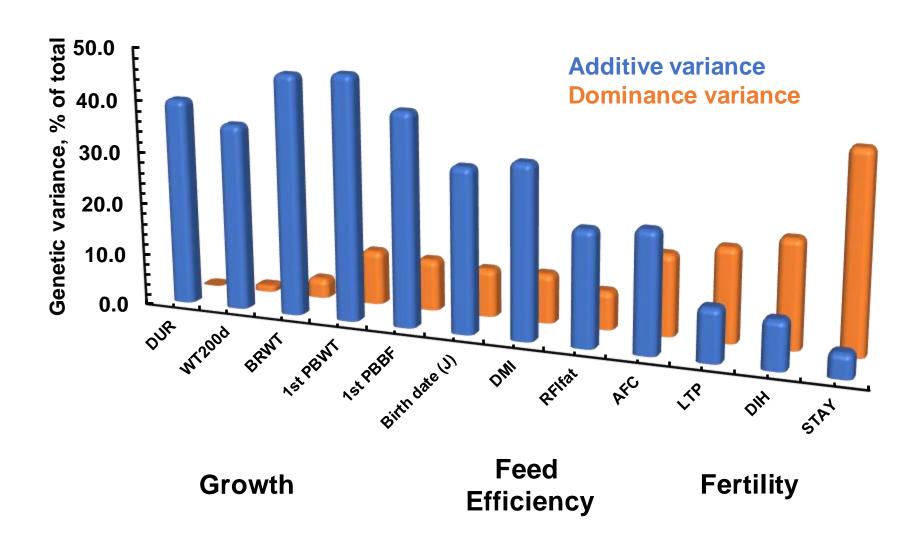
+2 points/10% change

+3 points/10% change


+79 lb over 5 parities

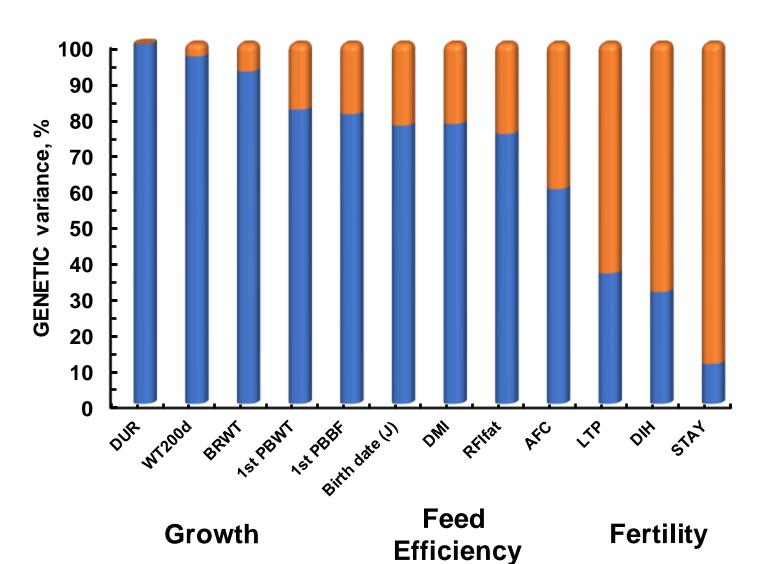
per 10% change

+51 days/10% change


A erra is retriced beterrapposity (pld) and itselfector cracallatice retrictor e creci cultings in cracal erricles of eilers

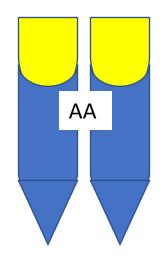
Genomic retained heterozygosity is our genomic measure of hybrid vigor or heterosis

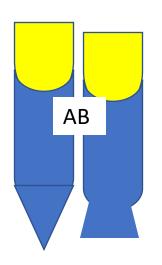
Genetic variance as a percentage of total phenotypic variance

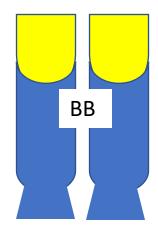


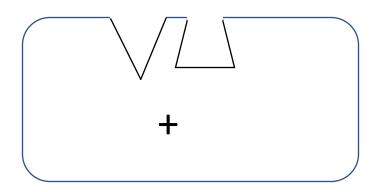
Valente et al. 2023

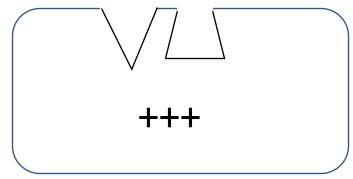
Variance as a percentage of total genetic variance

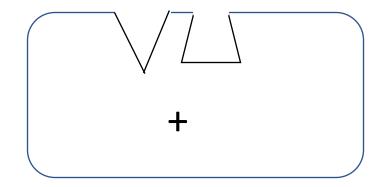



Additive variance Dominance variance


Valente et al. 2023


Example: BIOLOGICAL MODEL OF HETEROSIS (dominance)





Phenotype = Genetic + Environment + Management

Genetic effect = additive + non-additive genetic effects (dominance and epistasis)

Additive genetic effect

- Traditional genetic evaluation models
- Cumulative or additive
- Stably inherited
- Major role growth, FE, carcass & maternal traits
- Predicts individual & offspring performance
- SNP coded as 0, 1 and 2

Non-additive genetic effect

- Useful for optimizing breeding schemes
- Within/across gene interaction
- Not stably inherited due to recombination
- Major role in fertility & fitness traits
- Predicts individual performance
- SNP coded as 0, 1 and 0

Examples of all-purpose (A) and maternal (M) indexes, and Replacement Heifer Index Scores (R)

		Genetic effects for growth, feed efficiency, maternal & carcass traits		
Breed Asc./company/orgs	System	Additive	Non-additive	
Angus-Canadian Balancer (CBI)	Α	YES	NO	
Red Angus - Herd Builder (HPI)	M	YES	NO	
Simmental - All-purpose (API)	Α	YES	NO	
Hereford-Maternal Prod. (MPI)	M	YES	NO	
Gelbvieh - \$COW	M	YES	NO	
Limousin - Elite & Super dams	M	YES	NO	
Igenity® Beef, Igenity + Envigor	M	YES	YES	
Gentec RHPI Score™	R	YES	YES	

Replacement Heifer Profit Index Score™

A DNA based Selection Score for Commercial Cow-calf Producers

Breeding Goal: produce a calf every year, while improving calf wean weight, cow feed efficiency,

fertility, and longevity.

RHP Index

- (-) Birth weight
- (-) 200-day wean weight
- (-) Residual feed intake
- (-) Feeding event duration
- (-) Pre-breed weight
- (+) Pre-breed backfat
- (-) Age at first calving

Replacement Heifer Profit Index Score™

A DNA based Selection Index for Commercial Cow-calf Producers

Grant Smith Brush Hills Ranch

"A real world practical example of how genomics can help producers"

"So far the results have been truly mind blowing."

February 2023

Overall open rate = 19.4%

		#	All	2-yr	3-yr
	RHPI Score™ (155 cows)	open	cows	old	old
	Above 50%	7	23%	33%	17%
Where did our culls					
come from?	Below 50%	23	77%	67 %	83%
	<u>Total</u>	30			

Effect of the Replacement Heifer Profit Index Score™ on open rate

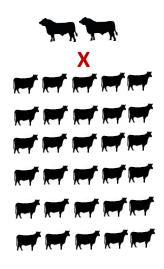
Open rate in crossbred beef heifers with BELOW vs ABOVE average RHPI Score™ (10 Alberta herds)

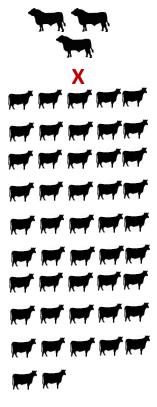
Replacement heifers	BELOW average	ABOVE average	Total
# exposed to breeding	359	549	908
# calving	275	474	749
# open	84	75	159
Open rate, %	23.40	13.66	P=0.0002

Financial impact of the Replacement Heifer Profit Index Score™

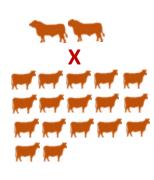
Increased net Income from ABOVE average RHPI Score™ heifers

9 more calves per 100 replacement heifers


- + \$14,175 from nine more calves
- + \$8,550 from nine fewer replacements (\$950/heifer)
- \$3,000 to genotype 100 heifers
- + \$19,725 net income


6 to 1 return on investment

\$3.15/lb for 500 lb calves; Alberta Beef Producers Weekly Feeder Prices, April 12, 2023
The cost of \$950/heifers accounts for all cost plus selling the cull replacement heifer


DNA pooling as a low-cost strategy for commercial cow-calf producers

Multi-sire Mating groups **2017 LRDC**

Costs (\$45/sample) \$6210 VS. \$567

Group characteristics

Cow number Color

30 ANHE mature cows

Angus % (genomic)

Hybrid Vigour (genomic) Open rate

black, blk-white face

AN 64%: HE 33%: SM 2%

41% 13.3% 47 ANHE mature cows black, blk-white face

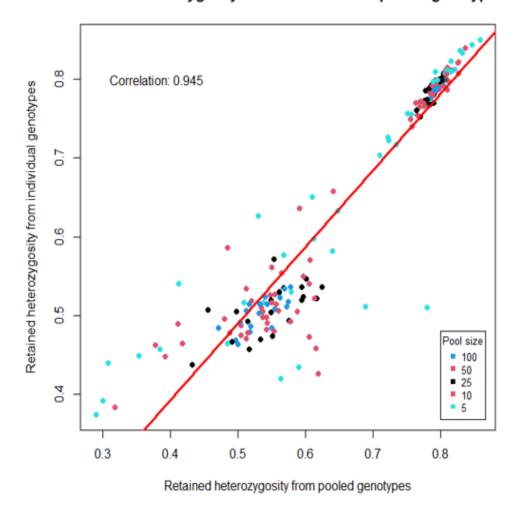
AN 87%: HE 9%: SM 1%

22% 21.3%

35 ARHE mature cows red, red-white face

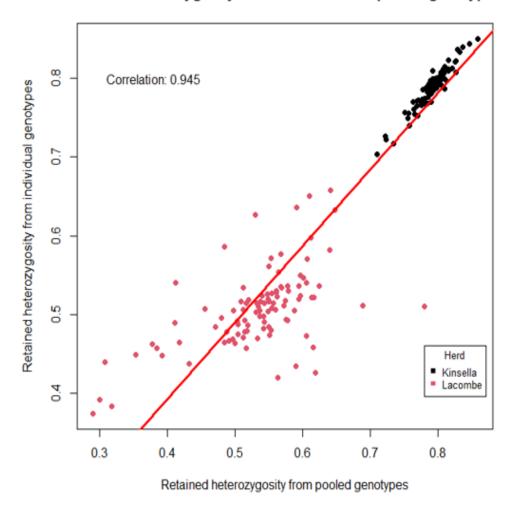
AR 81%:HE 8%: CH 6%

30% 8.6% 17 ARHE mature cows red, red-white face


AR 61%; HE 22%: CH 7%: SM 6%

52% 5.9%

Correlation between retained heterozygosity from individual and pooled genotypes.


A. Pool size (5, 10, 25, 50, 100)

Retained heterozygosity from individual and pooled genotypes

B. Herd (Kinsella, Lacombe)

Retained heterozygosity from individual and pooled genotypes

Conclusions

Genomic retained heterozygosity is a genomic indicator of heterosis

Retained heterozygosity is linearly related to female fertility and fitness traits

Non-additive genetic effects are due to dominance and epistasis

Dominance variance is a main source of phenotypic variation for

female longevity and stayability traits

Additive and dominance models can improve genomic prediction by 20-40%

Non-additive genetic effects are useful for breeding plans to increase longevity & LTP