

2023 Beef Improvement Federation Symposium July 3-6 • Calgary, Alberta, Canada • Hyatt Regency Calgary

Precision Matching of Objectives and Technologies in the Implementation of Breeding Programs

Brian Kinghorn^{1,2} and Sandy Kinghorn²

¹ University of New England, Australia ² MateSel, Australia

We need *precision* in these key questions ...

- Where to go ? ... Objectives
- How to get there ? ... Technologies

• How to get back ?

And Sel

Where to go

Just one example

And Sel

Where to go

Just one example

Animal Breeding questions ...

- Where to go ? Explore different directions different emphasis on each trait or genetic marker, different emphasis on diversity/inbreeding, different patterns of mating constraints, different patterns of use of AI & IVF, etc.
- How to get there ? Be precise use all available information on EBVs/EPDs, genomic/pedigree relationships, animal locations, logistical constraints, costs etc. in a balanced manner to best target the chosen direction.

Technical requirements

1. The breeder should have 'ownership' of the result. This brings relevance.

– a fancy computer tool is of little value if it is not **relevant** to the needs of the breeder.

- 2. The breeder needs power to target a wide range of possible outcomes.
 - As simple as possible
 - As complex as necessary

Example illustrations of MateSel features *CMateSel*

Basic operations: Single-sire mating vs. Multi-sire mating

Single-sire matings. You can dictate the range in number of females per bull

Multi-sire mating groups. Male syndicate groups only shown in this screenshot.

|--|

Direction	Frontier	Convergence	Grouping					
	Balance strategy:	3. Hard constr	aint on Targ	get Degrees	~			
Max permissable coancestry: .0525								
	Target (Degrees:		25				
	Weight	on progeny F:		0				
Run	Update	Pause	Print Matin	ngs Stop	Close			
Г			_		t			
106 - 104 - Progeny Index 102 - 100 - 98 -								
	.05	.0625 Pare	.075 ntal Coances	.0875 try	.1			

ole Pro	ogeny Inbreeding	Individual Coances	try Trait mana	gement Marker managem	ent Mate selections
Mating	Sire	Dam	Prog_Index	Prog_F	
1	Magnus	Lilianna	106.55	0.0266	
2	Magnus	Meadow	106.28	0.1418	
3	Magnus	Paisleigh	105.19	0.027	
4	Magnus	Celia	107.65	0.1465	
5	Magnus	Opal	107.06	0.1422	
6	Magnus	Gwen	109.08	0.0248	
7	Magnus	Sariyah	106.71	0.1422	
8	Magnus	Chana	106.68	0.0256	
9	Magnus	Lisa	105.05	0.0256	
10	Magnus	Barbara	109.69	0.018	
11	Wayne	Guadalupe	107.95	0.0127	
12	Wayne	Elora	108.47	0.0273	
13	Wayne	Clementine	107.8	0.0323	
14	Wayne	Nola	111.94	0.0287	
15	Wayne	Lina	106.93	0.0099	
16	Wayne	Erica	107.93	0.0111	
17	Wayne	Aliana	112.56	0.0116	
18	Wayne	Alyson	109.92	0.0118	
19	Wayne	Jaylee	110.74	0.0121	
20	Wayne	Frankiee	108.74	0.0143	
21	Wayne	Amia	110.73	0.0125	
22	Wayne	Hadlee	108.17	0.0294	
23	Wayne	Giana	107.89	0.0137	
24	Wayne	Danica	107.81	0.0118	
25	Wayne	Harleigh	108.44	0.0105	
26	Wayne	Raquel	109.93	0.0099	
27	Wayne	Raylee	108.48	0.0099	
28	Wayne	Aminah	109.13	0.0105	
29	Wayne	Emmalynn	112.26	0.0184	
30	Wayne	Patricia	108.11	0.011	
31	Wayne	Avalyn	107.88	0.0213	
32	Wayne	Jana	107.52	0.032	

—

Direction	Frontier	Convergence	Grouping	
	Balance strategy:	3. Hard constr	aint on Targ	get Degrees 🗸 🗸
	Max per	missable coanc	estry:	.0525
	Target (Degrees:		25
	Weight	on progeny F:		0
Run	Update	Pause	Print Matir	ngs Stop Close
106 - 104 - Progeny Index 102 - 100 - 98 -				
	.05	.0625 Pare	.075 Intal Coances	.08/5 .1

sole	Progeny	Inbreedin	g Individual	Coancestry	Trait managem	ent Mar	ker mana	agement	Mate selections
Form	alaa i	Index	CoorCord	Composi	GrandSim	AbaMin	Min	Max	< Hoop
ren	ales I	INCEX	Coaricanu	Coariber	Giandone	ADSIMILI	I MILLI	Max	< 0565
Wa	ne	114.66	0.0241	0.1438	Gannon	0	0	25	25
Mag	inus	110.62	0.0564	0.1	Cassius	0	0	25	10
Gon	don	107.22	0.0547	0.067	Rodney	0	0	25	6
Alex	ander	106.52	0.0468	0.0618	Rodney	0	0	25	4
Mus	tafa	105.56	0.0542	0.045	Xzavier	0	0	25	2
Dila	n	105.92	0.0567	0.0479	Zyaire	0	0	25	2
Kan	nyn	106.32	0.0553	0.0539	Xzavier	0	0	25	1

C

O Show matings

Show sire use

 \times —

Update

C

💕 🖬 🗖 🚠 💪

Direction	Frontier Cor	vergence	Grouping	
	Balance strategy: 3.1	Hard constr	aint on Targ	et Degrees 🗸 🗸
	Max permiss	able coanc	estry:	.0525
	Target Degr	ees:		90
	Weight on p	rogeny F:		0
Run	Update	Pause	Print Matin	igs Stop Close
_				
106 -			~	TT
104 - Progeny Index 102 - 100 - 98 -		R		

Parental Coancestry

emales i	Index	CoanCand	CoanSel	GrandSire	AbsMin	Min	Max	< Uses
lordy	83.04	0.019	0.0445	Juelz	0	0	25	6
Navne	114.66	0.0241	0.0408	Gannon	0	0	25	4
Mill	87.66	0.0344	0.0453	Corv	0	0	25	4
Darian	100.82	0.0266	0.0428	Joziah	0	0	25	3
Bodie	98 94	0.0266	0.0428	Joziah	0	0	25	3
Sibson	84.4	0.0373	0.0425	Augustine	0	0	25	3
Shiloh	89.38	0.0455	0.0445	Rev	0	0	25	2
Denver	102 88	0.0525	0.0437	Zvaire	0	0	25	2
Gerald	98.1	0.0416	0.042	Terrance	0	0	25	2
laziel	97.88	0.0523	0.0429	Chris	0	0	25	1
Abdullah	101.2	0.0523	0.0429	Chris	0	0	25	1
Blaze	94.54	0.0511	0.0445	Aron	0	0	25	1
Gordon	107.22	0.0547	0.0426	Rodney	0	0	25	1
ondon	103.56	0.0498	0.0432	Emery	0	0	25	1
Merrick	93.36	0.0437	0.0423	Chris	0	0	25	1
Ronnie	102.4	0.0492	0.0436	Keanu	0	0	25	1
Konnor	84.68	0.0512	0.045	Shiloh	0	0	25	1
Dangelo	83.6	0.0496	0.0452	Shiloh	0	0	25	1
Kamryn	106.32	0.0553	0.0434	Xzavier	0	0	25	1
Shaun	103.34	0.0562	0.0437	Xzavier	0	0	25	1
Coen	103.94	0.0556	0.0439	Felipe	0	0	25	1
eighton	103.86	0.0542	0.044	Xzavier	0	0	25	1
Mustafa	105.56	0.0542	0.0431	Xzavier	0	0	25	1
lova	88.8	0.0486	0.0423	Darrell	0	0	25	1
Dilan	105.92	0.0567	0.0447	Zyaire	0	0	25	1
'ahya	103.32	0.0487	0.0424	Chris	0	0	25	1
Vexander	106.52	0.0468	0.0433	Rodney	0	0	25	1
Shepard	100.2	0.0543	0.0429	Xzavier	0	0	25	1
Eason	103.86	0.0563	0.0441	Zyaire	0	0	25	1
eroy	87.42	0.0501	0.0423	Darrell	0	0	25	1

-

×

Mixed Mating Groups

Multi-sire joining Multi-sire pastures Sire syndicates

Preparing matched groups for later matings Multipliers herds Groups of Al sires

> Mass spawning fish Open pollination

_	_		1
📂 🖬		G,	

Direction	Frontier (Convergence	Grouping		
	Balance strategy:	3. Hard const	traint on Tarç	get Degrees	~
	Max perm	issable coan	cestry:	.0525	
	Target De	grees:		25	
	Weight or	n progeny F:		0	
Run	Update	Pause	Print Matin	ngs Stop	Close
103 - M	MG gap: .00	D	~		
101.8 - Progeny Index	/		L.F.		
99.25 -	Å				
98 -					
	5	.0532 Par	.0565 rental Coances	.0598	.063

sole F	Progeny Inb	reeding Individua	al Coancestry	Trait management	Marker ma	anagement	Mate selections	
Male	s in Mix	ed Mating Gr	oups (OutM	MGmales.txt)				
MMG	Membe	r ID		Index	B.Wt	Y.W	t C.Wt	
1	1	Magnus		110.620	0.883	103.533	3 31.142	2
1	2	Bodie		98.940	1.004	121.09	5 28.191	2
1	3	Darian		100.820	1.195	94.990	31.309	3
1	4	London		103.560	1.042	127.648	5 24.909	3
1	5	Wayne		114.660	0.759	114.85	5 33.022	2
1	6	Coen		103.940	1.138	98.092	2 43.446	1
Male	group c	oancestry:	0.055739					
2	1	Dilan		105.920	1.207	102.975	5 26.722	1
2	2	Denver		102.880	1.100	106.622	2 32.052	1
2	3	Alexander		106.520	0.840	112.393	3 28.900	1
2	4	Frankie		105.020	1.191	89.308	34.641	1
2	5	Gordon		107.220	0.987	91.000	37.322	;
2	6	Eason		103.860	1.017	104.441	1 34.921	1
Male	group c	oancestry:	0.093714					
3	1	Shaun		103.340	0.999	105.079	9 36.110	1
3	2	Kamryn		106.320	0.824	84.78	5 33.458	1
3	3	Abdullah		101.200	0.981	91.283	3 32.791	3
3	4	Mustafa		105.560	0.960	103.860	38.607	:
3	5	Yahya		103.320	0.825	105.050	34.311	:
Male	group c	oancestry:	0.080038					

Thank you Alison!

O Show female groups

Show male groups

Update

_

💕 🛃	 G,

Direction	Frontier C	Convergence	Grouping		
	Balance strategy:	3. Hard const	traint on Targ	et Degrees	2
	Max permi	issable coan	cestry:	.0525	
	Target De	grees:		25	
	Weight or	progeny F:		0	
Run	Update	Pause	Print Matin	gs Stop	Close
103 - M	IMG gap: .00	()	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
101.8 - Progeny Index	/		F		
100.5 -					
99.25 -					
	05	.0532	.0565	.0598	.063

Fem: 1							h
1	ales in Mi	ixed Mating Groups	(OutMMGfemales.t)	t)			Ī
	21	Carolyn	95.720	0.792	106.999	25.674	
1	22	Simone	112.840	0.972	97.294	36.363	
1	23	Jaylee	106.820	1.241	110.851	39.824	
1	24	Estrella	99.320	0.948	91.881	31.830	
1	25	Selene	103.960	0.987	112.662	34.859	
1	26	Danica	100.960	0.648	114.126	28.596	
1	27	Raylee	102.300	1.125	98.378	32.501	
1	28	Kallie	91.420	1.081	117.757	28.799	
1	29	Lina	99.200	0.946	99.768	37.894	
1	30	Guadalupe	101.240	1.224	84.665	33.386	
2	1	Clementine	100.940	1.026	116.926	34.066	
2	2	Lyra	95.220	0.980	118.088	32.476	
2	3	Nathalie	97.740	0.986	101.327	32.754	
2	4	Sariyah	102.800	0.966	84.795	37.526	
2	5	Clare	94.400	1.233	98.711	31.464	
2	6	Nancy	98.700	1.117	112.061	26.677	
2	7	Lilianna	102.480	0.796	92.551	30.491	
2	8	Jaydene	99.280	1.181	112.666	31.355	
2	9	Patricia	101.560	1.111	102.071	35.140	
2	10	Chana	102.740	0.886	108.346	31.649	
2	11	Audrina	99.220	1.354	99.384	33.835	
2	12	Princess	105.640	1.236	107.615	40.559	
2	13	Amaris	97.220	0.970	88.575	29.130	
2	14	Claudia	89.120	1.359	98.954	32.655	
2	15	Cara	101.400	0.925	99.345	41.788	
2	16	Amia	106.800	1.380	119.975	35.651	
2	17	Jessa	100.540	1.231	91.296	36.619	
2	18	Jana	100.380	1.248	82.488	37.078	
2	19	Zariyah	96.600	0.957	118.634	34.750	
2	20	Aubrielle	96.520	1.037	109.264	28.520	

—

Balancing long-term and short-term genetic gains

PMateSel

For a closed breeding program, 'pedal to the metal' is not best in the long run.

Fine control of diversity and inbreeding outcomes **Q** MateSel

Balance in use and costs of AI and IVF

ateSel

Multiple EndUses

Multiple EndUses

Targeting Multiple EndUses to cater for the varied needs of bull-buying clients

Female EPDs plotted for two client indices with EndUse 2 and 3 targeted matings in orange and blue. Useful separation in resulting progeny merit. Example nucleus matings are black, as seen <u>here</u>. Thanks to ABS Global.

ateSel

Managing distribution of Progeny Inbreeding

When the red line is invoked, HS and FS matings will be quickly eliminated!

eSel

This should *not* replace a general weighting against mean Progeny Inbreeding.

https://doi.org/10.1093/jhered/esad027

The conventional use of Grouping to allow heifers to be mated only by High CE bulls.

CEcontrol makes better use of the CE EPD resources available, as seen <u>here</u>.

- Management of distribution of sires across herds
 - sire referencing schemes
 - genomic reference populations
- Managing **backup sires**
- Creating harmonious multi-sire mating syndicates

- Collective management of multiple genetic markers (recessive lethals, gene edits, QTL, etc) for both shortterm and long-term objectives.
- Decisions on generation and use of sexed semen and embryos
- Genomic mate selection.

• Why do we have **300 sheep breeders** using MateSel,

but probably under **100 beef breeders**?

- ... the sheep breeders have a system to extract the data.
- The breeders can operate independently.
- We are now developing MSaaS (MateSel-as-a-Service) to make this available to other service providers:

coboe:	MATESEL	
alysis:	MATESEL EXERCISES	
ate/	Select Run	
eate N	ew Run	
n templa	ite must be selected	
Select R	un Parameters:	1 .
Choose :	Index:	2.
Run nan	ne:	3
	Column:	4 -
Custom		

sheepgenetics.org.au/resources/matesel/

Service providers

Breeders extracting data from their association database and configuring initial constraints

MateSel + Home	\rm e Sandy Kinghorn			
New MateSel Run				
Select Herds	2 Grouping Rules	3 Balance Strategy	4 Traits	Review and Run
Please specify which male groups and female	e groups can be joined 📝 Learn More			
	AI_Heifers	AI_Cows	Nat_Heifers	Nat_Cows
AI_Bulls	Matings allowed Target matings 100	Matings allowed Target matings 100	Matings allowed	Matings allowed
Nat_Bulls	Matings allowed	Matings allowed	Matings allowed Target matings 25	Matings allowed Target matings 25
Back Next: Balance Strategy				

Breeders reviewing their inputs before launching MateSel

MateSel running with the ability to change targets in real-time to test different directions

Sheep genetics	به Return to member portal 🕜 MateSel Help Q Search	🖨 Sandy Kinghorn
MateSel Run: June Joinings		II Pause Run Stop Run
Frontier Target Progress 🛈	Overall Progress Traits Markers Progeny Inbreeding Individial Coancestry	Mating List Inputs
biversity Diversity		

• A system that brings *precision* in predicting the impact of your decisions ...

- ... can also bring *power to discover* a wide range of alternative directions.
- This gives more *control and confidence* in chosen directions.

And Sel

Where to go

How to get back?

	George	Mildred	Gabrielle	Females in Region 6	1				
George	1	0	0	0.012					
Mildred	0	1.02	0	0.043					
Gabrielle	0	0	1	0.131		Index	AbsMinuse	Maxuse	Trait1
Females in Region 6	0.012	0.043	0.131	1.09		104.32	11393	11393	3.26
							Or u	se Committe	d Matings
Or eg.	Average	relation	ship						
"All sows in multiplier herd 4"	beween George and								
"Bulls in syndicate mating group 2"	Females No pedigree manual for a	in Regional available?	Dn 6 See Jution.						

- Which buttons to press
- Demonstrations
- Discussions around opportunities

Manual = 133 pages ... videos popular!

Video Series

🕨 YouTube

The MateSel video series is hosted on YouTube. Click here or the YouTube logo to view the MateSel YouTube channel. An index of all videos can be found below.

4	Category: 1. Introduction								
	General Introduction	quick introduction to how MateSel works and its core functions and features.							
	Overview and Demo Project Test Drive	Provides a walkthrough of a demo project that comes with MateSel.							
Category: 2. Preparing your data files									
	Preparing your main data file	Comprehensive, except no detail on handling genetic markers.							
	Preparing Matesel.ini	Please also see Introduction to version 7.0.12.0 from about 6min, which shows the new format for Matesel.ini, including automatic upgrading.							
	Preparing InpOneGroup.txt	Setting constraints and other settings across all candidates.Includes basic discussion on what Groups are in MateSel.							
	Preparing InpGroups.txt - Standard Operations	Everything in this file up to the permission matrix, except for 'natural mating'.Example in beef cattle across US states.							
	Preparing InpGroups.txt - Advanced Operations	Features below the permission matrix in this file, plus 'natural mating'. Some discussion on method used for Grouping.							
Category: 3. The MateSel user interface									
	Windows Desktop	Coming soon							
	Web Browser	Coming soon							
	Batch Versions	Coming soon							
Category: 4. The MateSel Frontier									
	Frontier fundamentals	Includes discussion of what parental coancestry is, and why relationships are important. Simple spreadsheet example. Desired outcomes discussion, including programs Desire and Diversity.							
	Where should I aim?	First, be sure to make a correct Frontier - by example. Your corporate position. Measuring and predicting inbreeding rate/diversity loss and its effect on long-term gains.							
	Working with Balance Strategies	First 4 mins is introduction - you could fast forward that. Walking through the different ways of balancing Progeny Index and Parental Coancestry, with discussion on what strategy might be most suitable.							
Category: 5. Managing Trait Distributions									
	Standard operations	What are these trait distributions? Worked example of using the different control types for manipulating traits.							
	Advanced operations	This includes a number of unusual tricks, eg showing distributions for sires and for dams, as well as for progeny. Also using dummy traits to manage ages, breed crossing, locations etc. Please also see Introduction to version 7.0.12.0 for the desired gains options when Committed Matings are being displayed, and also for some relevant updates to format of Matesel.ini.							
	Should I manage my traits?	Changing distribution means (responses), and shapes (eg variances). Managing genetic variation for individual traits, and planning for the splitting of breeding lines. Discussion on compromises caused by mating for desired trait distribution shapes.							
4	Category: 6. Genetic markers								
	Coding markers in the main data file	This video tells you how to enter genetic marker data into your dataset, so that you can manipulate these in Matesel.							
	Managing individual markers/QTL/Gene Edits	A guide to how marker information is displayed and how to use Matesel to manage allele and genotype distributions in the progeny.							

Fine control of trait and marker outcomes

IateSel