Sequencing Strategies to Enhance the Next Generation of Genetic Evaluations

Troy Rowan BIF Annual Symposium Advances in Selection Decisions Breakout July 4, 2023

Our low-pass sequencing future

Potential for further cost reduction **Rare variation** No need for chip redesign or updates **SNP** Discovery **CNV** detection

Low-Pass sequencing

Low-Pass Imputation

Rubinacci et al 2021

The Power of Imputation

Rowan et al. 2021

What does <u>accurate</u> imputation need?

• A large reference set of haplotypes

- High-coverage re-sequenced haplotype
- Representative of target population haplotypes

• High-quality reference genome

- Physical positions matter
- Recombination map

72															
0	0	0	0	1	1	1	0	0	1	1	1	1	1	1	0
1	1	1	1	1	1	1	0	0	1	0	0	1	1	1	0
1	1	1	1	1	0	1	0	0	1	0	0	0	1	0	1
0	0	1	0	1	1	1	0	0	1	1	1	1	1	1	0
1	1	1	0	1	1	0	0	1	1	1	0	1	1	1	0
0	0	1	0	1	1	1	0	0	1	1	1	1	1	1	0
1	1	1	1	1	0	1	0	0	1	0	0	0	1	0	1
1	1	1	0	0	1	0	0	1	1	1	0	1	1	1	0
0	0	0	0	1	1	1	0	0	1	1	1	1	1	1	0
1	1	1	0	0	1	0	0	1	1	1	0	1	1	1	0

Marchini et al. 2010

Imputation opportunity & challenge: Rare variation

We can't impute what we don't observe

As such, rare variation is a challenge

Rowan et al., 2019

The big questions:

• Who do we sequence?

• How deep do we sequence?

How often do we update?
 Reference
 Imputed samples in evaluation

The big questions:

• Who do we sequence?

• How deep do we sequence?

How often do we update?
 Reference
 Imputed samples in evaluation

Before we talk about sequencing for imputation...

We should be sequencing ALL sires with even moderate levels of AI usage!

Why sequence all AI sires?

- "Insurance Policy": Accelerate abnormality mapping and management
- Proactive monitoring of *de novo* mutations
- Lethal haplotype mapping at sequence resolution
- Enable haplotype-aware analyses
- Increased imputation qualities
- Current costs make this tenable!

How to build a reference panel?

Breed-specific

Multi-breed

Admixed populations will benefit from a multi-breed reference

- Admixed populations need representation across diversity of individuals
- Labelled population ≠ Actual population
- Draw on haplotype diversity from other population in imputation reference
- Using multi-population reference significantly improves per-SNP and per-individual imputation accuracy across samples!

Rowan et al. 2019

Imputation is just pattern matching!

850K Chip Imputation

Breed	Mean	Min	Max
Gelbvieh	0.998	0.994	0.999
Hereford			
Holstein			
Simmental			
Angus			
Jersey			
Limousin			
Nelore			
Brahman			
Gir			
Romagnola			
N'Dama	0.763	0.747	0.803

Rowan et al. 2019

n =50 Gelbvieh

Ascertainment Bias: Human Example

🔵 Gencove 0.5x 🗢 Gencove 1x 🔎 Illumina GSA

We have to move past sequencing only most common animals

Case Study from ASA:

- Top 150 sires cluster very closely together in PCA of full genomic dataset

- Sequencing only heavily-used bulls will sample only a small portion of haplotype-space

So how might we select sires to sequence?

- Use chip genotype data!
- Iteratively search for sequencing candidates

The big questions:

Who do we sequence?

• How deep do we sequence?

Sequencing depth = greater genotype confidence

>10X coverage
resulted in
substantially more
non-reference
discordances
(i.e. wrongly called
genotypes)

Chip vs Sequence

% Bob Schnabel

We should generate at least 15X genomes for reference individuals!

Element & Illumina are both generating sequence at \$2/GB

Miniaturized library preparations

Marginal cost increase between 5X and 15X is between \$60-\$150

C.I

同

Coverage Impacts on Genotype Call Quality

% Bob Schnabel

Sequencing is just the first step... Phasing matters!

And so does continually empirically evaluating accuracy

Testing Individuals: True high-coverage calls

Downsampled to low-coverage reads or chip genotypes

Evaluate imputation accuracy: On per-SNP and per-individual basis

Other things to consider:

• Pangenomes

Moderate-coverage sequencing

• Storage of genomes and imputed genotypes

TTGTCTCT

The Million Dollar Question:

Rowan et al. 2021

Haplotype reference panels must be representative of the target populations.

Multi-breed > Within-breed

High-quality reference sequences should be <u>at least</u> 10X to be optimally useful.

It is important to regularly evaluate imputation accuracy for both individuals and SNPs Reach out with questions!

trowan@utk.edu (865) 974-3190 @TroyNRowan

