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Phenome, phenomics, phenotyping
Phenomics = the acquisition of high-dimensional phenotypic data 
on an organism-wide scale.

“Some of the most scientifically disrupting and industry-relevant 
challenges relate to ‘phenomics’ as much as to ‘genomics”
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What is novel in novel phenotyping?

Novel / Hard to measure 
traits

Welfare/Health related

Behavioral

Physiological

Gas emissions

Feed Conversion

Massive collection of 
common traits

Real Time

“All” animals

Across farms world-wide

Under typical production 
conditions



Breeding programs 

Animal Science



Phenomics in animal breeding

Extract 
relevant 
measure

Raw sensor data Phenotypic measure Link to perennial 

animal ID

𝒙
𝒘
𝒚

= 𝒇(𝑴)

Phenotyping Statistical 

Modeling

EPD/BV/PTA



The need for phenotyping

Animal Science

Phenotyping

Management

Group-level indicators

Individual indicators

Enable Intervention

Genetic improvement

Improve relevant traits

Evaluate in the relevant 
environmentDefined by socio-

economic conditions: The 
production system and 

the farmers/community.

It’s hard to improve what we don’t measure (attributed to P. Drucker)



An example from the USA: DHIA

Animal Science

1890s: Babcock’s test: How 
to measure butterfat.

1905: Helmer Rabild starts 
DHIA in Michigan

1936 1st proven sire list

Source: Brito et al 2021.

• Provided useful data for 
management

• Built on existing infrastructure
• Fed sire comparisons (genetic 

evaluation)



(re) using data collected through precision livestock farming systems

Sensors Raw Data
Usable, 

processed 

data

Unused 

data

Action 

$!

$?



Types of sensors

Remote
Wearable

Combination (most phenotyping technologies)

Diosdado et al 2015.

Proximal

One sensors measures the phenotype, 

the other sensor IDs the animal



Challenges in using sensors for phenomics
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Challenge 1: Extracting (valid) phenotypes from sensor signal

Training data: 

Images + Annotation

Test data (images):

Performance under cross validation

True 
Positives

False 
Positives

False 
Negatives

Mask 
accuracy

Model



Classifying interactions at the feeder
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No Contact Head to Body (direct)

LeveringMounting



Overall accuracy under random cross validation
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Recall: proportion of videos 

labeled (ground truth) as <X> 

that are correctly classified.

Precision: proportion of videos 
classified as <X> that are 

actually labeled (ground truth) 

as such. 



Performance under across time validation

Drop in precision for most labels



Performance of validation across feeders
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Another example: Animal detection

Training set Test set Precision IOU

10-May 11-May 0.9302 0.71

10-May 17-May 0.8733 0.725

10-May 18-May 0.7988 0.687

10-May 24-May 0.843 0.705

10-May 25-May 0.8718 0.688

Performance of pig detection over time

Goal: draw a box around each 

animal, evaluate its performance.

Then use the box to extract relevant 

phenotypes



Another example: Animal detection

Feeder use/interaction predicted by 

model 
Observed Feeder use/interaction

This model may be useful for predicting feeder use, but not so much for interactions at the feeder



And another one: Key point detection
Here the goal is to detect previously selected key points in unmarked images of animals

Use “canned” software:

Trained on labeled videos of 

unknown (to us horses).

Validated on horses recorded at 

MSU. It works!!!

…Until it doesn’t



And another one: Key point detection

If the key points are well placed, what phenotypes can we 

extract from them?
bodyparts

Nose Nose Nose Eye Eye Eye Nearknee Nearknee Nearknee

Frame x y likelihood x y likelihood x y likelihood

0 232.87 74.34 1.00 231.50 49.55 1.00 158.60 118.27 0.46

1 232.90 74.53 1.00 231.51 49.61 1.00 158.49 118.33 0.49

2 236.78 73.94 1.00 235.15 49.65 1.00 159.46 118.85 1.00

3 241.27 74.52 0.99 238.44 49.59 1.00 159.35 118.95 1.00

4 242.60 73.11 1.00 241.56 47.23 1.00 158.83 118.55 1.00

5 243.56 72.66 0.99 242.64 45.72 1.00 158.11 119.03 1.00

6 244.86 70.36 0.99 242.40 42.86 1.00 157.53 118.61 1.00

7 248.45 68.27 0.99 242.95 42.35 1.00 156.34 118.92 1.00

8 248.28 66.83 0.99 242.89 41.68 1.00 155.15 118.48 1.00

9 248.75 65.12 0.98 242.10 37.25 1.00 154.70 117.83 1.00

10 248.96 64.10 0.99 241.65 36.06 1.00 155.12 119.07 1.00

11 253.06 62.78 1.00 242.50 36.40 1.00 156.83 118.53 0.99

12 253.92 61.01 1.00 242.20 35.23 1.00 156.62 118.01 0.98

13 252.46 59.61 1.00 242.01 34.86 1.00 157.04 117.64 0.99

14 253.91 58.41 1.00 243.56 34.56 1.00 160.37 118.94 0.99

15 254.22 57.68 1.00 244.50 33.71 1.00 163.35 120.60 0.99

Form follows function?



And another one: Key point detection

Pure transfer learning 

using horse model



Challenge 2: Animal identification

Extract 
relevant 
measure

Raw sensor data Phenotypic measure Link to perennial 

animal ID

𝒙
𝒘
𝒚

= 𝒇(𝑴)

Phenotyping Statistical 

Modeling

EPD/BV/PTA

Key step in phenotyping is to link measurement to a perennial 

animal ID that can connect to genotypic and pedigree records



Challenge 2: Animal identification

Uniform coat colors makes ID without markings difficult…

(in most cases)



Challenge 2: Animal identification



Challenge 2: Animal identification

Morphometrics?

https://www.innovationnewsnetwork.com/

Read ear tags?

Combine it with other wearables



Open set problem: individual records without ID?

⚫

⚫

⚫
⚫

⚫

⚫

⚫

⚫
⚫
⚫

⚫
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⚫
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⚫

⚫

⚫

⚫

⚫

Open 
set 

Cluster

Individual records without ID (it 

may contain errors)

Summary
Phenotype 

distribution

+ Allele 

frequencies
= Prediction 

equation

Beef breeders have proposed using pooled 

genotyping. Those ideas can be combined with 

individual phenotypes without IDs

Animals are 

recognized as 

they show up



Opportunity: better results from “old” models with new data
Social genetic effects

𝒚 = 𝑿𝜷 + 𝒁𝑑𝒖𝑑 + 𝒁𝑐𝒖𝑐 + 𝒆 )𝒆~𝑵(0, 𝑰𝜎𝒆
2
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Intensity of 

interaction

Lesion 

counts

Response phenotype

Ignoring 

behavioral 

interactions 

and  social 

effects

Modeling 

social 

effects 

accounting 

for behavior

~50% > direct h2 

1.2𝜎𝒅
2 < 𝜎𝒄

2 < 2.0𝜎𝒅
2

Behavioral phenotyping?



More opportunities for improving classic models

GxE using reaction norm models is nothing new, except 

that… We could have an air temperature sensor 

mounted on the back of a cow: Measure the environment 

CHOSEN by the animal ☺.

Maternal effects models are not new, but now 

we can model the maternal effect as a function 

of mother-progeny distance: Separate effect of 

milk production from maternal attention.



Opportunity: New models for new data: Dyadic data

𝒙
𝒘
𝒚

= 𝒇(𝑴)

EPD/BV/PTA

Challenge: genomic prediction for traits 
expressed in pairs of individuals

MT-GLMM

SGE
MT-GLMM

Dyadic or social 
relation model (SRM)

MT-SRM



Modeling directional dyadic data (probit binary model)

𝜇𝑖𝑗𝑘 = 𝑏0 + 𝐹𝐸𝑖𝑗𝑘 + 𝑔𝑖 + 𝑟𝑗 + 𝑑𝑖𝑗𝑘 + 𝑠𝑔𝑘  

𝐹𝐸𝑖𝑗𝑘 = 𝑠𝑒𝑥𝑘 + 𝛼𝑤𝑗𝑘 + 𝛽𝑤𝑖𝑘 + 𝛿1𝑧𝑖𝑗𝑘
′ + 𝛿2𝑧𝑖𝑗𝑘

′′  +𝛿3𝑠𝑖𝑗𝑘
′

Expected interaction
Giver effect

receiver effect

dyad effect

Weight of giver and receiver

Animal-level effects Dyad-level effects

𝑧𝑖𝑗𝑘
′ ቊ

1 𝑖𝑓 𝑖, 𝑗 𝑠ℎ𝑎𝑟𝑒𝑑 𝑠𝑎𝑚𝑒 𝑛𝑢𝑟𝑠𝑒𝑟𝑦 𝑝𝑒𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑧𝑖𝑗𝑘
′′ ቊ

1 𝑖𝑓 𝑖, 𝑗 𝑠ℎ𝑎𝑟𝑒𝑑 𝑠𝑎𝑚𝑒 𝑙𝑖𝑡𝑡𝑒𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Random effects

𝒈~𝑁(0, 𝑮𝜎𝑔
2)

𝒓~𝑁(0, 𝑮𝜎𝑟
2)

𝒅~𝑁(0, 𝑰𝜎𝑑
2)

𝒔𝒈~𝑁(0, 𝑰𝜎𝑠𝑔
2 )

Social group

𝑃 𝑦𝑖𝑗𝑘 = 1 = Φ(𝜇𝑖𝑗𝑘) 

Measure (genetic) of similarity

Department of Animal Science



Estimation of genetic parameters
Only binary data: modeling probability of attacks

Department of Animal Science

2.5% 50% 97.5%

Sex -0.193 -0.015 0.170

Common Nursery -0.391 -0.310 -0.237

Common Litter -0.199 0.001 0.212

Weight receiver -0.007 0.000 0.007

Weight giver 0.002 0.013 0.023

Similarity -0.167 0.198 0.582

Quantiles of the posterior distribution of fixed effects

2.5% 50% 97.5%

Group 0.108 0.168 0.269

Receiver 0.030 0.047 0.072

Giver 0.543 0.670 0.823

Dyad 0.097 0.165 0.242

% giver 0.281 0.327 0.372

% receiver 0.015 0.023 0.035

% dyad 0.049 0.08 0.111

Quantiles of the posterior distribution of variance components

Posterior correlation between 
giver and receiver was not 
significant



Another example of dyadic data: Co-occurrence at the feeder
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Conclusions: benefits of sensor-based phenomics for breeders

New Traits

Behavior
Activity

Feed Intake
Gas emissions
Physiological

Classic traits and 
environmental 

variables measured 
in more relevant 

contexts 

Better modeling

Improve genomic 
predictions



Conclusions: Challenges in livestock phenomics

Validate 
phenotyping 
algorithms in 

broad 
contexts

link 
phenotypes 

trough 
interoperable 

ID

Validate 
genomic 

predictions of 
novel traits

Work across disciplines, but 

remember we (breeders, 

animal scientists) understand 

better the sources of 

phenotypic variation.

Integrate data streams from 

multiple sensors, keep 

working across disciplines.

This is where our realm, 

let’s shine ☺




