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Phenome, phenomics, phenotyping

Phenomics = the acquisition of high-dimensional phenotypic data
on an organism-wide scale.

“Some of the most scientifically disrupting and industry-relevant
challenges relate to ‘phenomics’ as much as to ‘genomics”
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What is novel in novel phenotyping?

Massive collection of

common traits

Welfare/Health related Real Time
Behavioral “All” animals
Physiological Across farms world-wide
Gas emissions Under typical production
Feed Conversion conditions
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Production
system

Genetic Progress

™ pork quantity
™ pork quality
J feed used

Breeding goals

Breeding Program

Phenotypes
Weight gain

Backfat depth
Marbling
Feed conversion ratio

Carcass weight //fﬁ

Genotypes

Collect BIG data
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Inbreeding

Evaluate
program
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Raw sensor data

Phenomics in animal breeding

Phencityping
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Statistical
Modeling

SNP markers

EPD/BV/IPTA
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The need for phenotyping

Phenotyping |

Group-level indicators Improve relevant traits

Individual indicators , Defined b _ o Evaluate in the relevant
€ined by S0clo- environment

economic conditions: The
production system and
the farmers/community.

Enable Intervention

It’s hard to improve what we don’t measure (attributed to P. Drucker)
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An example from the USA: DHIA

 Provided useful data for

1890s: Babcock’s test: How management

to measure butterfat. e Built Qn eX|st|ng.|nfrastructu.re
* Fedsire comparisons (genetic

evaluation)
1905: Helmer Rabild starts -
DHIA in Michigan st
g 8 000 / /V\// Canadienne
7 000 / //"/

Guernsey
6 000 - o B i S & —v
—— Holstein
/
5000
/\./\//\/ ///
4000 | /> — Jersey

@ 3000 + : : : : : . Milking Shorthomn
1960 1970 1980 1990 2000 2010 2020

- Source: Brito et al 2021.

Average 305-d lactation yield (kg)

1936 15t proven sire list
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(re) using data collected through precision livestock farming systems

Usable,

Sensos Raw Data processed
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Types of sensors

Wearable Proximal
Remote

Acc (9)
N o N
o

Acc (g)
on'o o

Acc ()
Mo N

Lyi Standi Feedi o e '- ”*—t'I fr_, .ﬁw > : “% S
LB L ™ R U One sensors measures the phenotype,
Diosdado et al 2015. the other sensor IDs the animal
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Challenges in using sensors for phenomics
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Challenge 1: Extracting (valid) phenotypes from sensor signal

Training data:
Images + Annotation

] =] (]l |

four sheep watching a dog peek through their fence.

golden retriever gazing at sheep in field from behind gate ‘ » 6 ”n p ‘
a dog looking through a fence at sheep in a field / ‘ |- p

a dog stands behind a fence, looking at the sheep in the field. [m ﬂ eollef.. . [Be . (

a white dog standing behind a wooden gate.

o otertayen w -
YOLO v3 network Architecture .

Performance under cross validation

True False False
Positives Positives Negatives

Mask
accuracy

Test data (images):
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Overall accuracy under random cross validation

1.0- 1.01
0.8 0.8
i -
= 0.6 Sos
w
3 E
o @
0.4 Q0.4
0.2 0.2
0.0 0.0
HB L M NC

HB L M NC

Recall: proportion of videos
labeled (ground truth) as <X>
that are correctly classified.

Precision: proportion of videos
classified as <X> that are
actually labeled (ground truth)
as such.
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Performance under across time validation

1.0 1.0 Annotation

NC M L HB Total
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Drop in precision for most labels

Total
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Performance of validation across feeders

1.01 1.01

uIiI' .CI'II
HB L M  NC HB L M  NC
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Goal: draw a box around each
animal, evaluate its performance.

Then use the box to extract relevant
phenotypes

Performance of pig detection over time

Training set | Test set |Precision| [0U

2 / { \ | -
K | \ ’
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.

10-May 11-May | 0.9302 | 0.71
10-May 17-May | 0.8733 | 0.725
10-May 18-May | 0.7988 | 0.687
10-May |24-May| 0.843 | 0.705
10-May | 25-May| 0.8718 | 0.688
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Finding overlap
with the
interaction_area

Detecting pigs
from 18-May
images

Both feeder
one and two

Observed Feeder use/interaction

50 08
100 06
150 04
200 0.2
250 0

100 200 300 400 500 600 700 800 900

Removing unique

values (Only one
pig present in the
area)

Removing zeros
(No pig detected)

interactions

Feeder use/interaction predicted by
model

100 200 300 400 500 600 700 800 900

50
100
150
200

250

300

This model may be useful for predicting feeder use, but not so much for interactions at the feeder
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And another one: Key point detection

Here the goal is to detect previously selected key points in unmarked images of animals

Validated on horses recorded at
MSU. It works!!!

l! 8
o

...Until it doesn’t

Use “canned” software:
DeepLabCut®

a software package for
&y animal pose estimation

Trained on labeled videos of
unknown (to us horses).

IOWA STATE UNIVERSITY



And another one: Key point detection

If the key points are well placed, what phenotypes can we

extract from them?

bodyparts
Nose Nose Nose Eye Eye Eye Nearknee Nearknee Nearknee
Frame X y likelihood X y likelihood X y likelihood

0 232.87 74.34 1.00 231.50 49.55 1.00 158.60 118.27 0.46
1 232.90 74.53 1.00 231.51 49.61 1.00 158.49 118.33 0.49
2 236.78 73.94 1.00 235.15 49.65 1.00 159.46 118.85 1.00
3 24127 74.52 0.99 238.44 49.59 1.00 159.35 118.95 1.00
4 242.60 73.11 1.00 241.56 47.23 1.00 158.83 118.55 1.00
5 243.56 72.66 0.99 242.64 45.72 1.00 158.11 119.03 1.00
6 244.86 70.36 0.99 242.40 42.86 1.00 157.53 118.61 1.00
7 248.45 68.27 0.99 242.95 42.35 1.00 156.34 118.92 1.00
8 248.28 66.83 0.99 242.89 41.68 1.00 155.15 118.48 1.00
9 248.75 65.12 0.98 242.10 37.25 1.00 154.70 117.83 1.00
10 248.96 64.10 0.99 241.65 36.06 1.00 155.12 119.07 1.00
11 253.06 62.78 1.00 242.50 36.40 1.00 156.83 118.53 0.99
12 253.92 61.01 1.00 242.20 35.23 1.00 156.62 118.01 0.98
13 252.46 59.61 1.00 242.01 34.86 1.00 157.04 117.64 0.99
14 253.91 58.41 1.00 243.56 34.56 1.00 160.37 118.94 0.99
15 254.22 57.68 1.00 244.50 33.71 1.00 163.35 120.60 0.99

Form follows function?
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Pure transfer learning
using horse model

IOWA STATE UNIVERSITY

And another one: Key point detection
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Front leg conformation:
1: Severely buckled knee
3: Buckled knee

5: Normal

9: Forward slope in legs

Rear leg conformation:
1: Rear legs tucked
underneath animal

5: Normal

9: Straight back legs




Challenge 2: Animal identification

Phenqtyping Statistical

I : _ ~ Modeling
Raw sensor data Phenotypic measure  Link to perennial =~ sw e

anlmal ID

EPD/ BV/ PTA
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Key step in phenotyping is to link measurement to a perennial
animal ID that can connect to genotypic and pedigree records
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Challenge 2: Animal identification

(in most cases)

Uniform coat colors makes ID without markings difficult...

IOWA STATE UNIVERSITY



Challenge 2: Animal identification

Computers and Electronics in

£ 8N Agriculture
ELSEVIER Volume 176, September 2020, 105642

- oy T
locate feeding region
96000(=48000x2) 1s videos

M locate .fee&:ling region
96000(=24000x4) 1s videos

Recognition of feeding behaviour of
pigs and determination of feeding time
of each pig by a video-based deep
learning method

Chen Chen 2 P, Weixing Zhu @ & &, Juan Steibel ®, Janice Siegford ¢, Junjie Han ©,

i Tomas Norton P & &

i s M Labelled feeding time (Day1)

! 4500 M Recognised feeding time (Day1)

i M Labelled feeding time (Day2)

i 4000 M Recognised feeding time (Day2)

i M Labelled feeding time (Day3)
3500 ¥ Recognised feeding time (Day3)

HaEaE ok an § W
W R 7
= - —

3000

2500 -

Feeding time /s

2000

1500

1000

180x 430

500 -

Pigl Pig2 Pig3 Pig4 Pigs Pigé Pig7 Pig8
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Challenge 2: Animal identification

Morphometrics?

Combine it with other wearables

Ethernet 9 Transmits ToF data

https://www.innovationnews network.com/ q <
Beacon
(®)

Read ear tags? /

0.99888 3 . 44 g)

8

Telemeter in a hat .
Local unit
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Open set problem: individual records without ID?

Individual records without ID (it
may contain errors)

[ o

[ [

o o
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e e + Allele — Prediction
o 4 frequencies equation
o o

® o Phenotype

o o o

° ° distribution

: Animals are ® | ~

® recognized as @ -

: they show up

Beef breeders have proposed using pooled
genotyping. Those ideas can be combined with
individual phenotypes without IDs

-
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Opportunity: better results from “old” models with new data
Social genetic effects

Group mate’s phenotypes
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Intensity of
interaction

“ATE UNIVERSITY

Estimation of indirect social genetic effects for skin

lesion count in group-housed pigs by quantifying

behavioral interactions: @

Belcy K Angarita, Rodolfo J C Cantet, Kaitlin E Wurtz, Carly | O’'Malley, Janice M Siegford,
Catherine W Ernst, Simon P Turner, Juan P Steibel 2

Journal of Animal Science, Volume 97, Issue 9, September 2019, Pages 3658-3668,
https://doi.org/10.1093/jas/skz244
Published: 032 September2019  Article history v
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More opportunities for improving classic models

GXE using reaction norm models is nothing new, except Maternal effects models are not new, but now
that... We could have an air temperature sensor we can model the maternal effect as a function
mounted on the back of a cow: Measure the environment of mother-progeny distance: Separate effect of

CHOSEN by the animal ©. milk production from maternal attention.

IOWA STATE UNIVERSITY




Opportunity: New models for new data: Dyadic data

SNP marker.

EPD/BV/IPTA

nnnnnnnnnnnn TRy

MT-GLMM

Challenge: genomic prediction for traits
expressed in pairs of individuals

IOWA STATE UNIVERSITY

a) Behavioral phenotyping b) Genomics and other phenotypes

Animals

12345678910 11 12 8
= -. [ u > ) Commercial trait
a " ‘a i x phenotypes
= a2 -
— > g
7 mEE o OEE
— o =
% ‘Of E* ws g SNP
- = o markers
P mif g
- M3 H/ ittt el
- Dyadic phenotype: intensity of £ ' = ]’ ’II (
o interaction (one sided aggression) @ E WL l ’
ﬂ * M
IIIII III E%illl III \IIIJ’ LIaN I} i k HH

Individual phenotype:
intensity of delivered aggression

c) Classic modeling /\‘ d) Novel models

Multi-trait model with  Social effect model: Predict dyadic Joint prediction of
individual behavior and  production trait and interactions from interactions and
production trait social interaction genomic information production trait
X matrix x
(W) = F(M) = fom, ) = f) (7)=ron
Y SGE Dyadic or social MT-SRM
MT-GLMM relation model (SRM)




Modeling directional dyadic data (probit binary model)

P(yiji = 1) = ©(1jx) (*_> receiver effect g~N(0,Ga})
dyad effect
: : Giver effect yad eree r~N(0,Go?)
Expected interaction ,
\ / / Social group d~N(0,Ic})
— N 2
:ul'jk — bO+FEl]k+gl +7} +dijk+59k sg~N(0,Iosy)

J

|
Random effects

Animal-level effects Dyad-level effects Measure (genetic) of similarity
| : \ : /
FE;;; = sex; + « J\+ Lwi + 57 ijk T SZZl]k +53Suk

\ I {1 if i,j shared same litter

Ljk 0, otherwise

Weight of giver and receiver
) {1 if i,j shared same nursery pen

Z;: .
Ljk 0, otherwise
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Estimation of genetic parameters
Only binary data: modeling probability of attacks

giver_id 8 18 22 42 48 50 70 86 90 96 110 114 120

is 1 ° é é g é i i i i 2 é 2 Quantiles of the posterior distribution of variance components
22 0 0 0O 01 1 1 0 0 O 0] 0]
e 1i: i11iiiaood | 25% | 50% | 97.5%
48 1 1 1 1 1 1 1 1 0 1 1 1
50 1 1 0 0 0O 1 0 0 1 1 0 1
>0 5 1 0 0 o o o o o5 o 1 Group 0.108 0.168 0.269
% 60110111 o0 1 o Receiver 0.030 0.047  0.072
926 o 01 o 0o 0O 0 0 O o} 1 0]
110 o 0 1 1 1 1 1 1 0 1 1 1 i
114 1 1 0 0 0o 1 1 1 1 o o 0 leer 0543 0670 0823
120 1 1 0 1 0o o 0o 0 0 1 o 0] Dyad 0097 0165 0242
Quantiles of the posterior distribution of fixed effects % o pp— g g
iver . . ;
_ 97.5% ®
o :
0.193 0.015 0.170 % receiver 0.015 0.023 0.035
Common Nursery ~ -0.391 10310 -0.237 % dyad 0.049 0.08 0.111
Common Litter -0.199 0.001 0.212
_ _ Posterior correlation between
Weight receiver -0.007 0.000 0.007 . .
giver and receiver was not
Weight giver 0.002 0.013 0.023 significant
Similarity -0.167 0.198 0.582
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Another example of dyadic data: Co-occurrence at the feeder

Estimation of direct and social effects of feeding
duration in growing pigs using records from
automatic feeding stations

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

ELSEVIER journal homepage: www.elsevier.com/locate/fcompag . . . .
Belcy K Angarita, Junjie Han, Rodolfo J C Cantet, Sarah K Chewning, Kaitlin E Wurtz,
Janice M Siegford, Catherine W Ernst, Juan Pedro Steibel 2

Recognition of feeding behaviour of pigs and determination of feeding time ) Journal of Animal Science, Volume 99, Issue 5, May 2021, skab042,

of each pig by a video-based deep learning method e https://doi.org,/10.1093/jas/skab042

Chen Chen™", Weixing Zhu™*, Juan Steibel®, Janice Siegford®, Junjie Han“, Tomas Norton"™* Published: 03 May 2021 Article history v

While previous research has ssume d a constant FIND'NGS

social interaction value fo

group, this 5““1?’ EXe mnn:d Visit length to the feeder was affected by both
13580 sing the timing direct effects (i.e., those specific to the

--Km - pigs visited the feeder as a proxy for social effects: individual at the fi ) and social effects in

cases wher replacement time between

locate feeding region locate feedmg region - --[—a[—m‘] - :\ngmgghﬂuu visits was short (<1 min).

96000(=24000x4) 1s videos 96000(=48000x2) 1s videos (FITS ONE PIG)

340x430

MITToring w
MORE COMPETITIVE PIG x
. — . 7 REPLACES PIG AT FEEDER

o 4 >
<o) <7 eSS coMPETITIVE @ il
PIG LEAVES FEEDER

¢ MORE TOTAL TIME Animals who spent

) : é AT FEEDER more total time per day
In cases where a pig at the feeder is replaced

A x : at the feeder seemed to
immediately, it was assumed that a shorter \ do so by shortening the
24656 1s feeding videos  locate feeding region 61744 1s non—feedmg vndeos locate feeding region ~3 meal duration of the feeding pig is a result meal lengths of
= . » £

of the social effect of the pig that follows it. preceding individuals.
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Conclusions: benefits of sensor-based phenomics for breeders

Classic traitsand
environmental

variables measured |mprove genOmiC

in more relevant

contexts prEdiCtiOnS

New Traits

Behavior
Activity
Feed Intake
Gas emissions
Physiological

[OWA STATE UNIVERSITY

Better modeling




Conclusions: Challenges in livestock phenomics

Validate link

phenotyping phenotypes Validate

genomic
predictions of
novel traits

algorithms in trough
broad interoperable
contexts ID

Work across disciplines, but Integrate data streams from This is where our realm,
remember we (breeders, multiple sensors, keep let’s shine ©
animal scientists) understand working across disciplines.

better the sources of
phenotypic variation.
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