IOWA STATE UNIVERSITY

Department of animal Science

Use of Hardware and Sensors Towards Phenomics to Deliver Complex Data and Advance Animal Breeding

Juan P. Steibel

Professor of Animal Science

J. Lush Endowed Chair of Animal Breeding and Genetics

Phenome, phenomics, phenotyping

Phenomics = the acquisition of high-dimensional phenotypic data on an organism-wide scale.

"Some of the most scientifically disrupting and industry-relevant challenges relate to 'phenomics' as much as to 'genomics"

Pérez-Enciso and Steibel *Genet Sel Evol* (2021) 53:22 https://doi.org/10.1186/s12711-021-00618-1

Open Access

Phenomes: the current frontier in animal breeding

Miguel Pérez-Enciso^{1,2*} and Juan P. Steibel^{3,4}

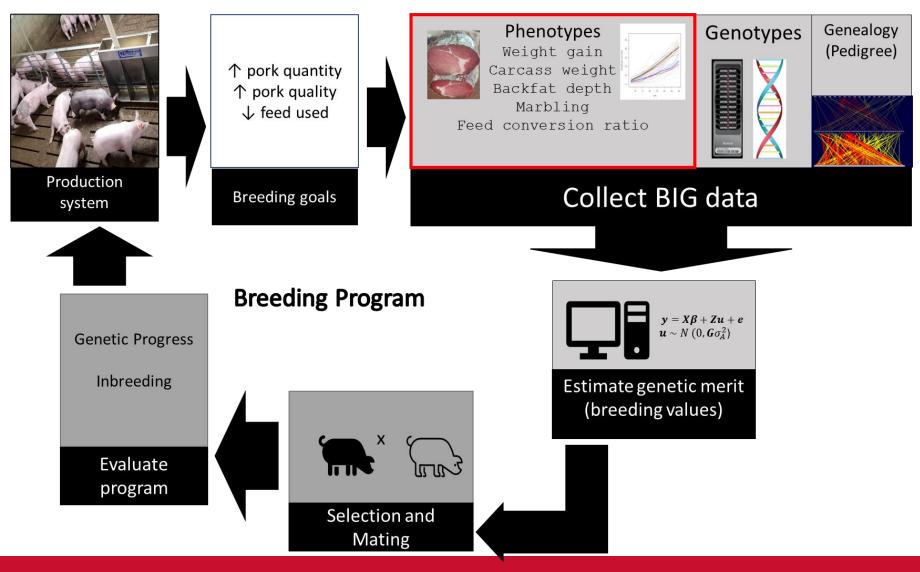
IOWA STATE UNIVERSITY

OPINION

What is novel in novel phenotyping?

Novel / Hard to measure traits	Massive collection of common traits
Welfare/Health related	Real Time
Behavioral	"All" animals
Physiological	Across farms world-wide
Gas emissions	Under typical production
Feed Conversion	conditions

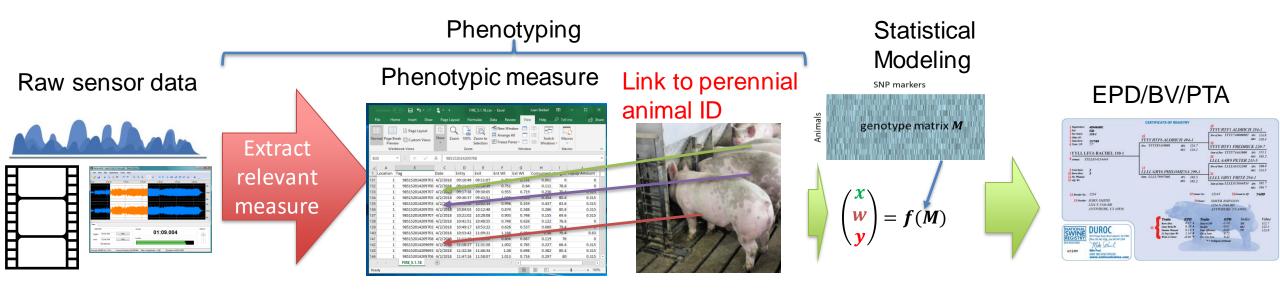
Breeding programs



IOWA STATE UNIVERSITY

Animal Science

Phenomics in animal breeding



The need for phenotyping

Phenotyping

Management

Group-level indicators

Individual indicators

Enable Intervention

Defined by socioeconomic conditions: The production system and the farmers/community. **Genetic improvement**

Improve relevant traits

Evaluate in the relevant environment

It's hard to improve what we don't measure (attributed to P. Drucker)

IOWA STATE UNIVERSITY

Animal Science

An example from the USA: DHIA

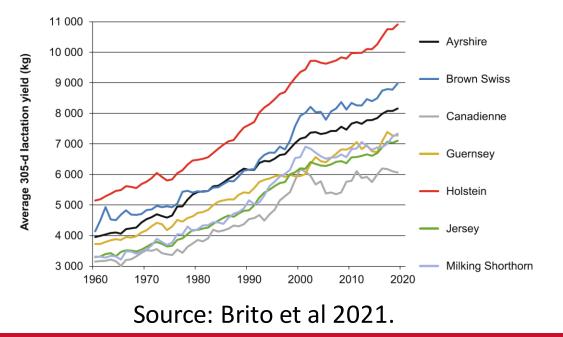
1890s: Babcock's test: How to measure butterfat.

1905: Helmer Rabild starts DHIA in Michigan

IOWA STATE UNIVERSITY

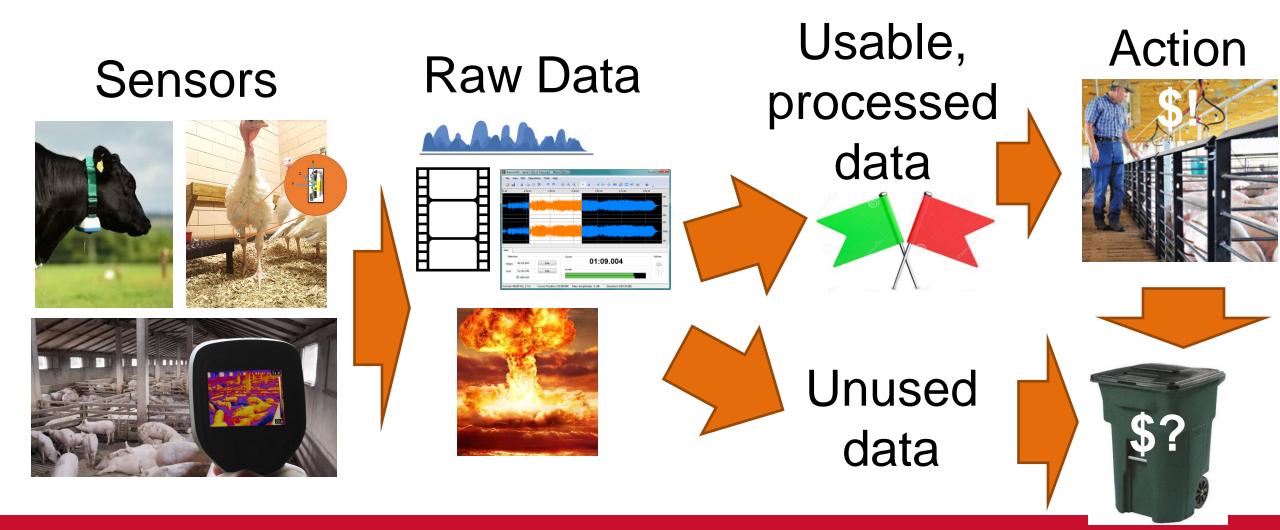
1936 1st proven sire list

- Provided useful data for management
- Built on existing infrastructure
- Fed sire comparisons (genetic evaluation)

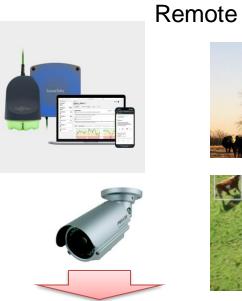


Animal Science

(re) using data collected through precision livestock farming systems

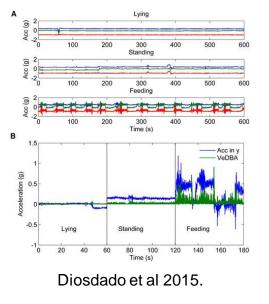


Types of sensors



8 8968

Wearable



Proximal

Combination (most phenotyping technologies)

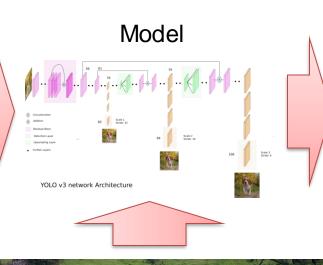
One sensors measures the phenotype, the other sensor IDs the animal

Challenges in using sensors for phenomics

<u>Challenge 1</u>: Extracting (valid) phenotypes from sensor signal

Training data: Images + Annotation

Test data (images):



Performance under cross validation

True	False	False
Positives	Positives	Negatives
Mask accuracy		

Classifying interactions at the feeder

No Contact

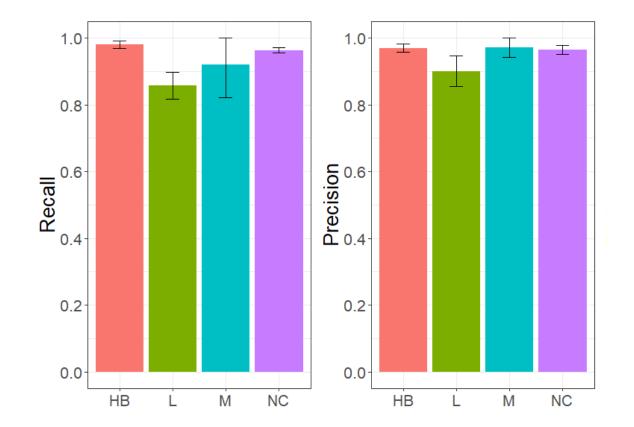
Head to Body (direct)

IOWA STATE UNIVERSITY

Levering



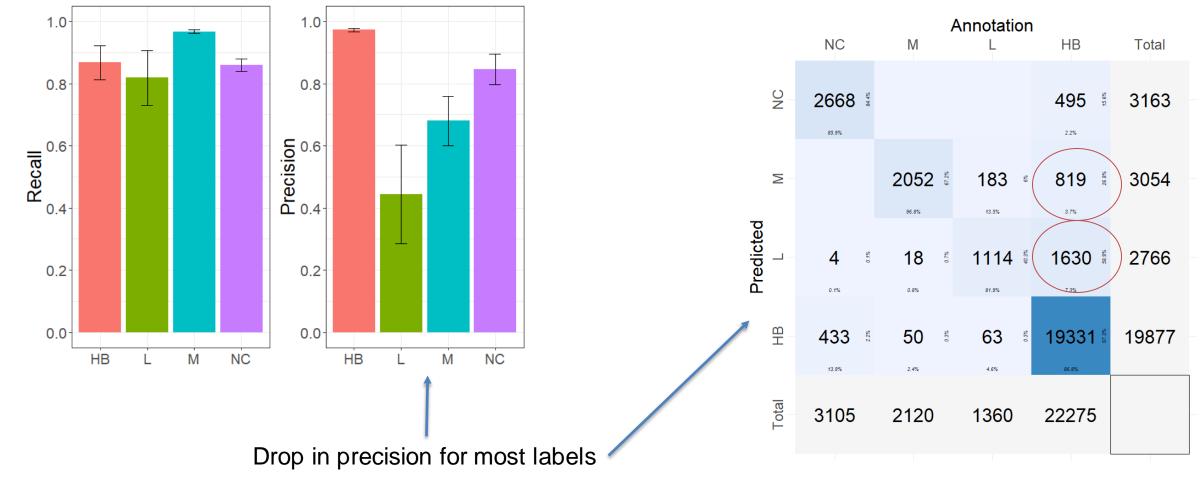
Overall accuracy under random cross validation



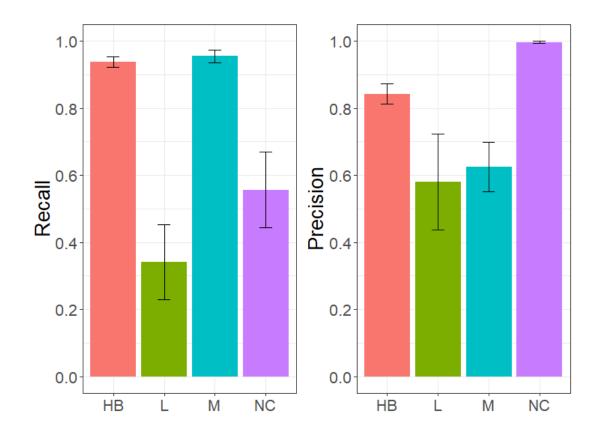
Recall: proportion of videos labeled (ground truth) as **<X>** that are correctly classified.

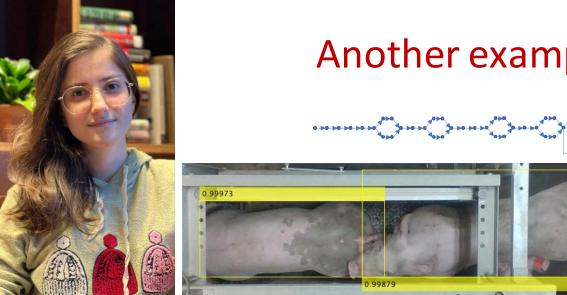
Precision: proportion of videos classified as **<X>** that are actually labeled (ground truth) as such.

Performance under across time validation

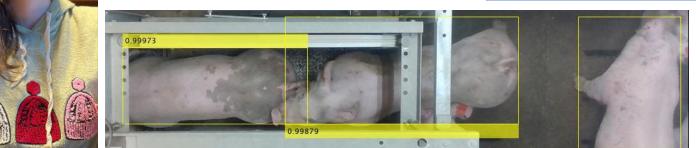


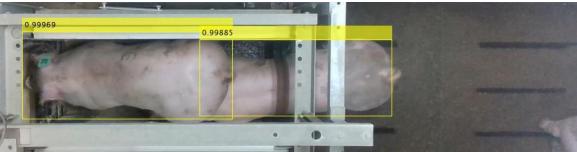
Performance of validation across feeders





Another example: Animal detection





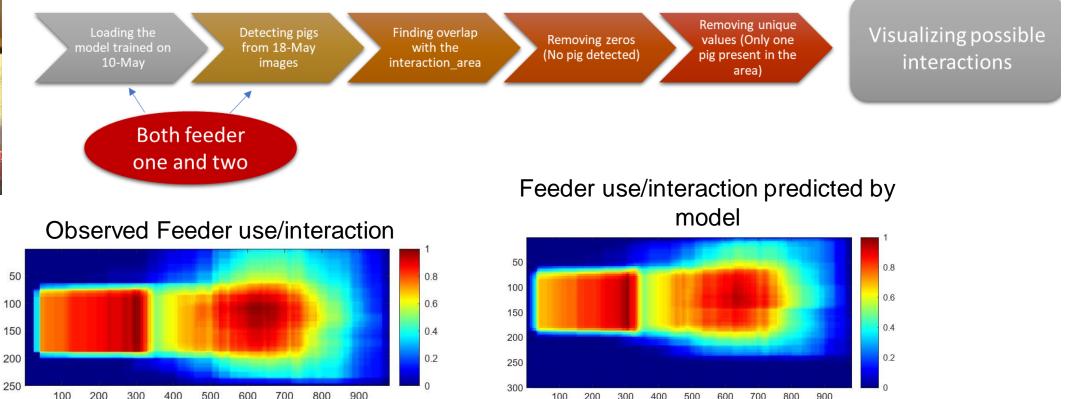
Goal: draw a box around each animal, evaluate its performance.

Then use the box to extract relevant phenotypes

Performance of pig detection over time

Training set	Test set	Precision	IOU
10-May	11-May	0.9302	0.71
10-May	17-May	0.8733	0.725
10-May	18-May	0.7988	0.687
10-May	24-May	0.843	0.705
10-May	25-May	0.8718	0.688

Another example: Animal detection



This model may be useful for predicting feeder use, but not so much for interactions at the feeder

IOWA STATE UNIVERSITY

And another one: Key point detection

Here the goal is to detect previously selected key points in unmarked images of animals

Use "canned" software:

DeepLabCutTM: a software package for animal pose estimation

Trained on labeled videos of unknown (to us horses).

Validated on horses recorded at MSU. It works!!!

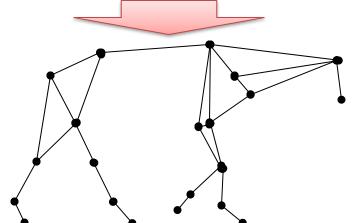
...Until it doesn't

And another one: Key point detection

If the key points are well placed, what phenotypes can we extract from them?

Frame

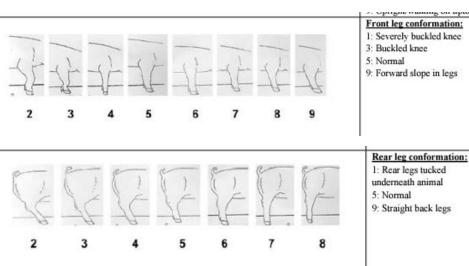
					bodypart	s			
1	Nose	Nose	Nose	Eye	Eye	Eye	Nearknee	Nearknee	Nearknee
2	х	У	likelihood	х	У	likelihood	х	У	likelihood
0	232.87	74.34	1.00	231.50	49.55	1.00	158.60	118.27	0.46
1	232.90	74.53	1.00	231.51	49.61	1.00	158.49	118.33	0.49
2	236.78	73.94	1.00	235.15	49.65	1.00	159.46	118.85	1.00
3	241.27	74.52	0.99	238.44	49.59	1.00	159.35	118.95	1.00
4	242.60	73.11	1.00	241.56	47.23	1.00	158.83	118.55	1.00
5	243.56	72.66	0.99	242.64	45.72	1.00	158.11	119.03	1.00
6	244.86	70.36	0.99	242.40	42.86	1.00	157.53	118.61	1.00
7	248.45	68.27	0.99	242.95	42.35	1.00	156.34	118.92	1.00
8	248.28	66.83	0.99	242.89	41.68	1.00	155.15	118.48	1.00
9	248.75	65.12	0.98	242.10	37.25	1.00	154.70	117.83	1.00
10	248.96	64.10	0.99	241.65	36.06	1.00	155.12	119.07	1.00
11	253.06	62.78	1.00	242.50	36.40	1.00	156.83	118.53	0.99
12	253.92	61.01	1.00	242.20	35.23	1.00	156.62	118.01	0.98
13	252.46	59.61	1.00	242.01	34.86	1.00	157.04	117.64	0.99
14	253.91	58.41	1.00	243.56	34.56	1.00	160.37	118.94	0.99
15	254.22	57.68	1.00	244.50	33.71	1.00	163.35	120.60	0.99

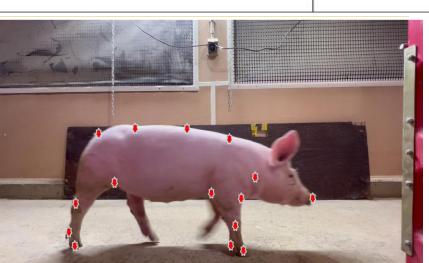


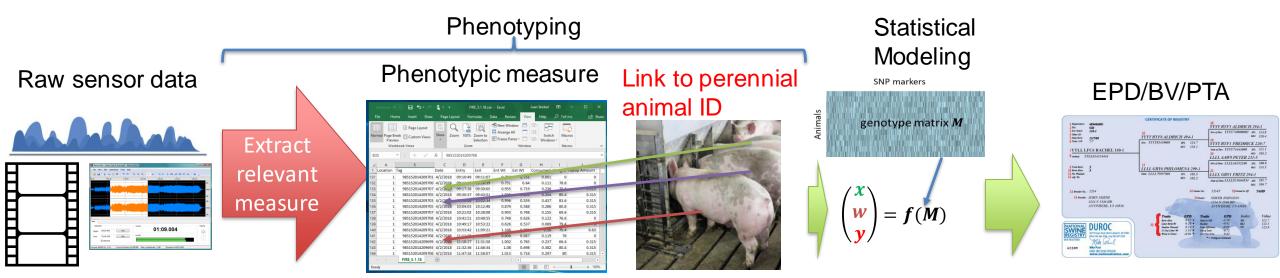
Form follows function?

And another one: Key point detection

Pure transfer learning using horse model



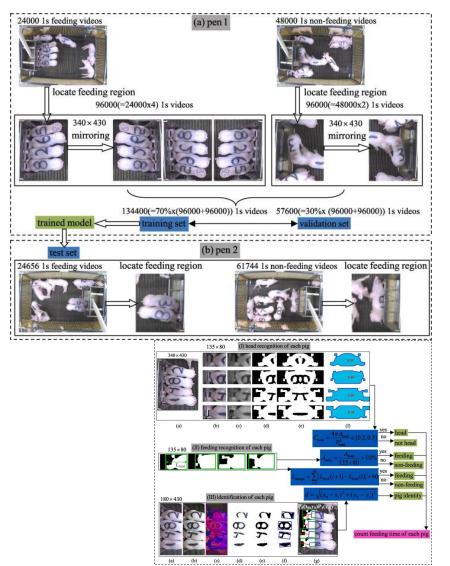




Key step in phenotyping is to link measurement to a perennial animal ID that can connect to genotypic and pedigree records

(in most cases)

Uniform coat colors makes ID without markings difficult...

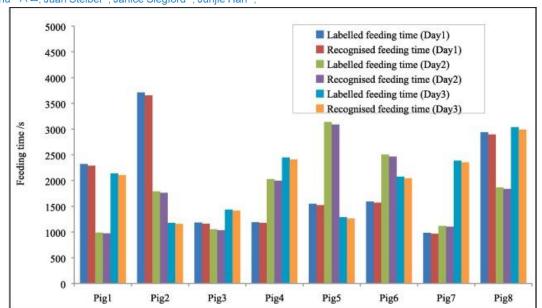


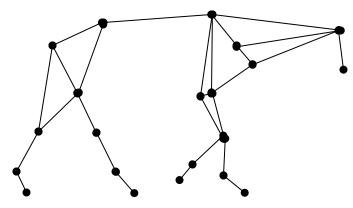
Tomas Norton ^b [∧] ⊠

Computers and Electronics in Agriculture Volume 176, September 2020, 105642

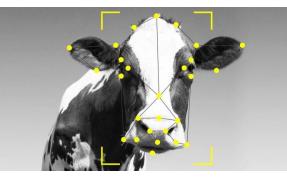
Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method

Chen Chen ^{a, b}, Weixing Zhu ^a $\stackrel{\circ}{\sim}$ \boxtimes , Juan Steibel ^c, Janice Siegford ^c, Junjie Han ^c,





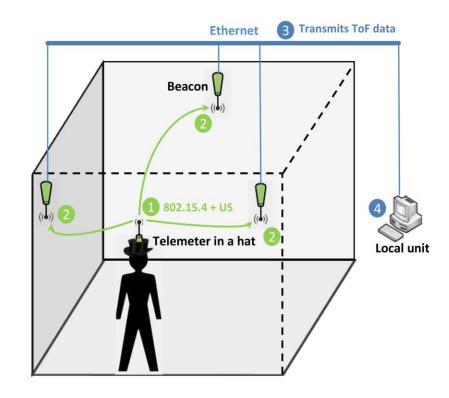
Morphometrics?

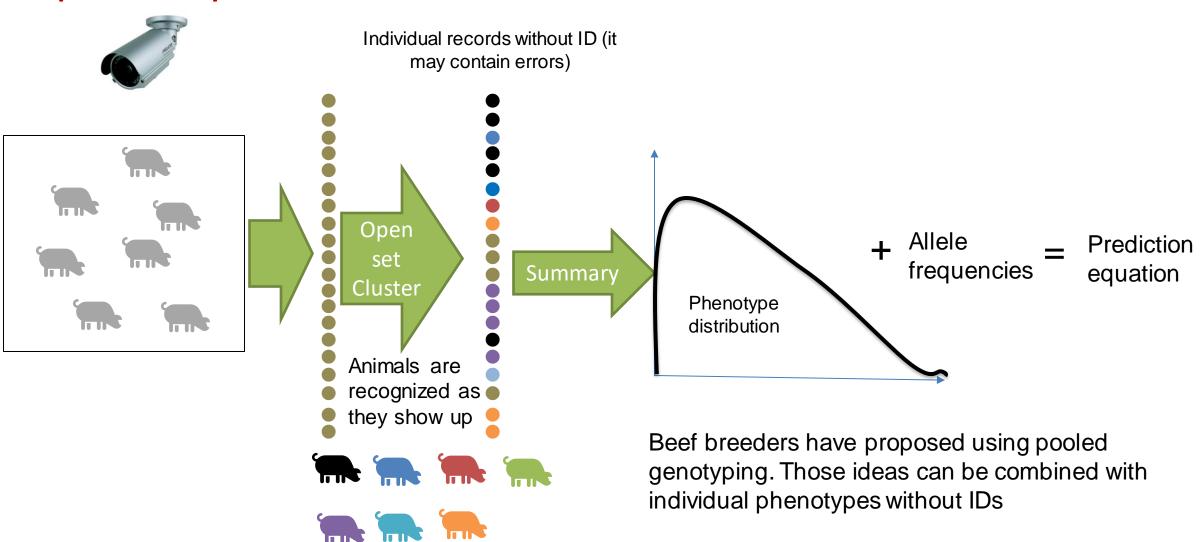


https://www.innovationnewsnetwork.com/

Read ear tags?

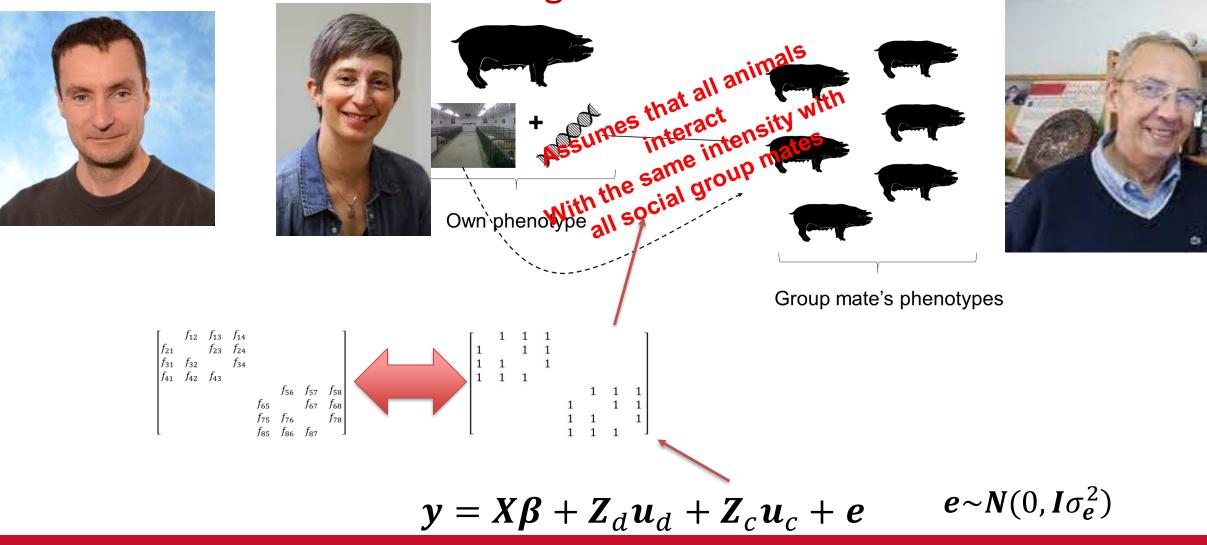
Combine it with other wearables

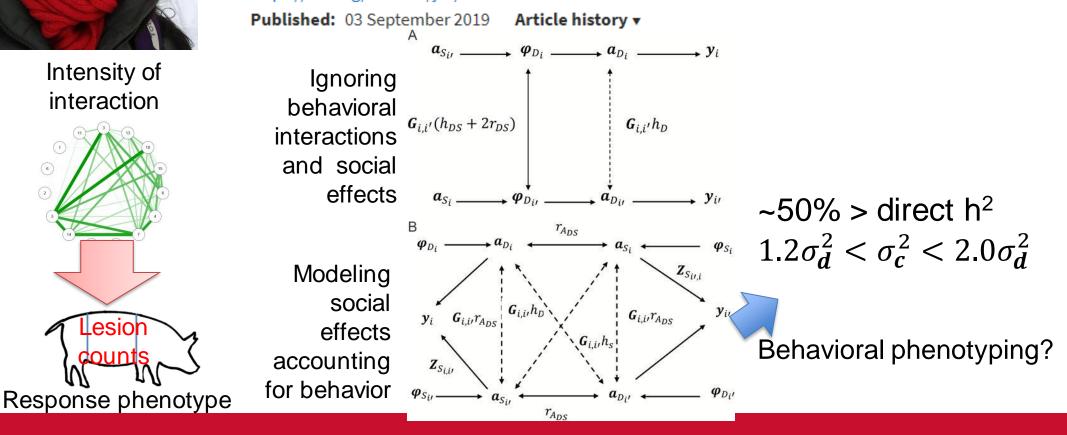




Open set problem: individual records without ID?

Opportunity: better results from "old" models with new data Social genetic effects





Estimation of indirect social genetic effects for skin lesion count in group-housed pigs by quantifying behavioral interactions¹ @

Belcy K Angarita, Rodolfo J C Cantet, Kaitlin E Wurtz, Carly I O'Malley, Janice M Siegford, Catherine W Ernst, Simon P Turner, Juan P Steibel ⊠

Journal of Animal Science, Volume 97, Issue 9, September 2019, Pages 3658–3668, https://doi.org/10.1093/jas/skz244

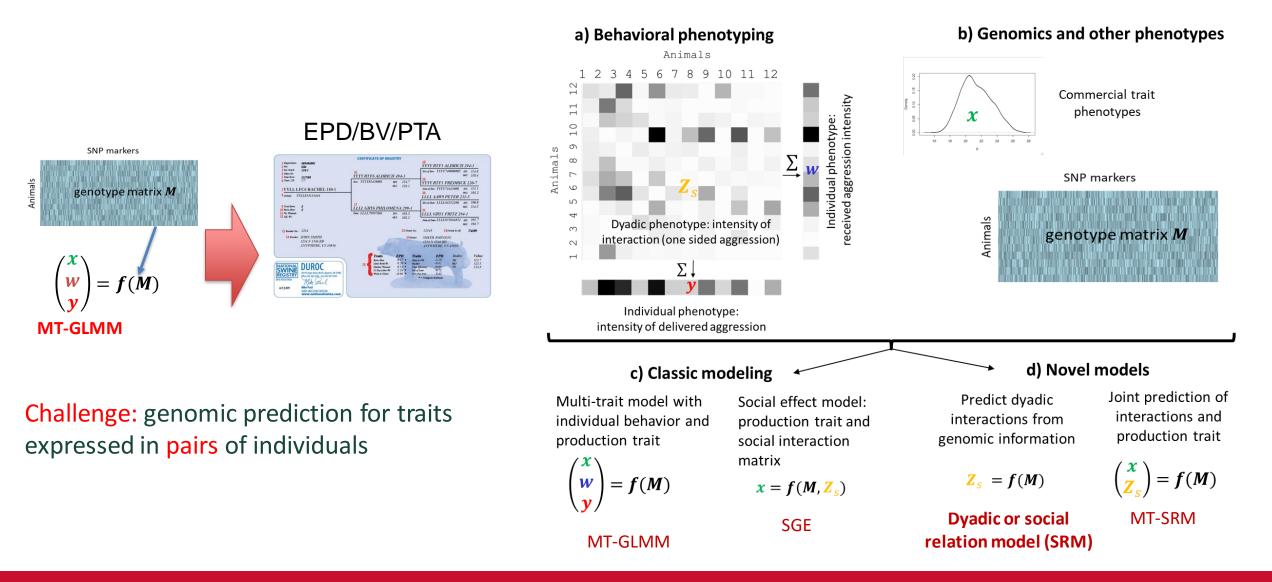
ATE UNIVERSITY

More opportunities for improving classic models

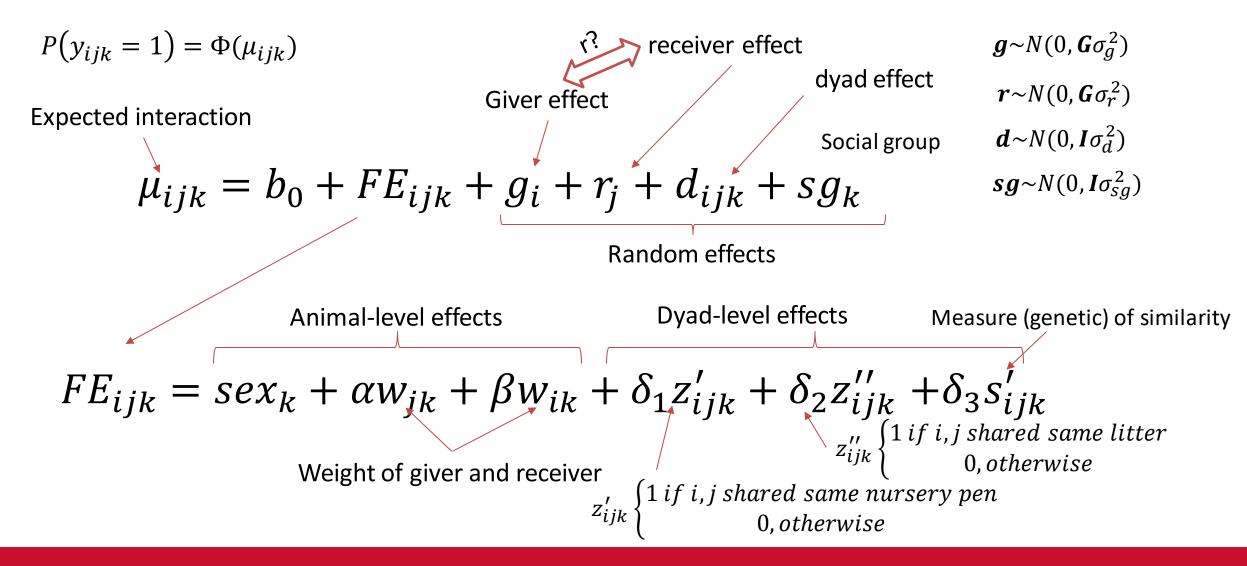
GxE using reaction norm models is nothing new, except that... We could have an air temperature sensor mounted on the back of a cow: Measure the environment CHOSEN by the animal ©.

Maternal effects models are not new, but now we can model the maternal effect as a function of mother-progeny distance: Separate effect of milk production from maternal attention.

Opportunity: New models for new data: Dyadic data



Modeling directional dyadic data (probit binary model)



IOWA STATE UNIVERSITY

Department of Animal Science

Estimation of genetic parameters

Only binary data: modeling probability of attacks

giver_id	8	18	22	42	48	50	70	86	90	96	110	114	120
8		0	1	1	0	1	1	1	1	1	0	1	0
18	1		0	0	0	0	1	1	1	1	1	0	1
22	0	0		0	0	1	1	1	0	0	0	0	0
42	1	1	1		1	1	1	1	1	1	1	0	1
48	1	1	1	1		1	1	1	1	0	1	1	1
50	1	1	0	0	0		1	0	0	1	1	0	1
70	0	1	0	0	0	0		0	0	0	0	0	1
86	0	0	0	0	0	1	1		1	0	0	0	0
90	0	0	1	1	0	1	1	1		0	0	1	0
96	0	0	1	0	0	0	0	0	0		0	1	0
110	0	0	1	1	1	1	1	1	0	1		1	1
114	1	1	0	0	0	1	1	1	1	0	0		0
120	1	1	0	1	0	0	0	0	0	1	0	0	

Quantiles of the posterior distribution of fixed effects

	2.5%	50%	97.5%
Sex	-0.193	-0.015	0.170
Common Nursery	<u>-0.391</u>	<u>-0.310</u>	<u>-0.237</u>
Common Litter	-0.199	0.001	0.212
Weight receiver	-0.007	0.000	0.007
Weight giver	<u>0.002</u>	<u>0.013</u>	<u>0.023</u>
Similarity	-0.167	0.198	0.582

Quantiles of the posterior distribution of variance components

	2.5%	50%	97.5%
Group	0.108	0.168	0.269
Receiver	0.030	0.047	0.072
Giver	0.543	0.670	0.823
Dyad	0.097	0.165	0.242
% giver	0.281	0.327	0.372
% receiver	0.015	0.023	0.035
% dyad	0.049	0.08	0.111

Posterior correlation between giver and receiver was not significant

IOWA STATE UNIVERSITY

Department of Animal Science

Another example of dyadic data: Co-occurrence at the feeder

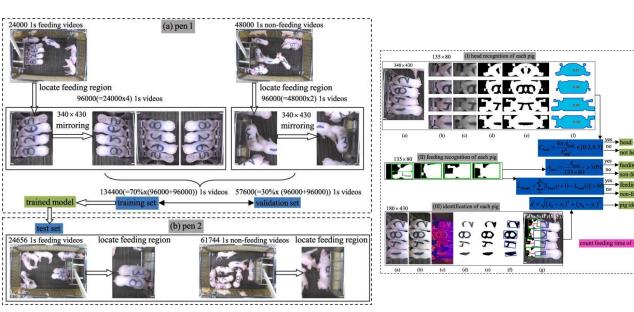
Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method

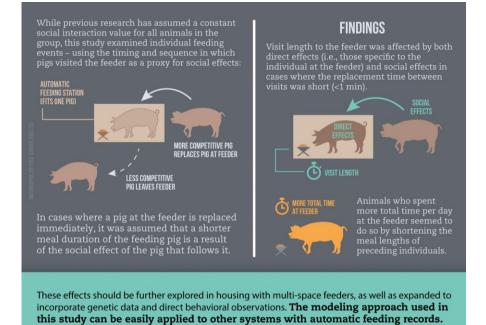
Chen Chen^{a,b}, Weixing Zhu^{a,*}, Juan Steibel^c, Janice Siegford^c, Junjie Han^c, Tomas Norton^{b,*}



Estimation of direct and social effects of feeding duration in growing pigs using records from automatic feeding stations

Belcy K Angarita, Junjie Han, Rodolfo J C Cantet, Sarah K Chewning, Kaitlin E Wurtz, Janice M Siegford, Catherine W Ernst, Juan Pedro Steibel ⊠

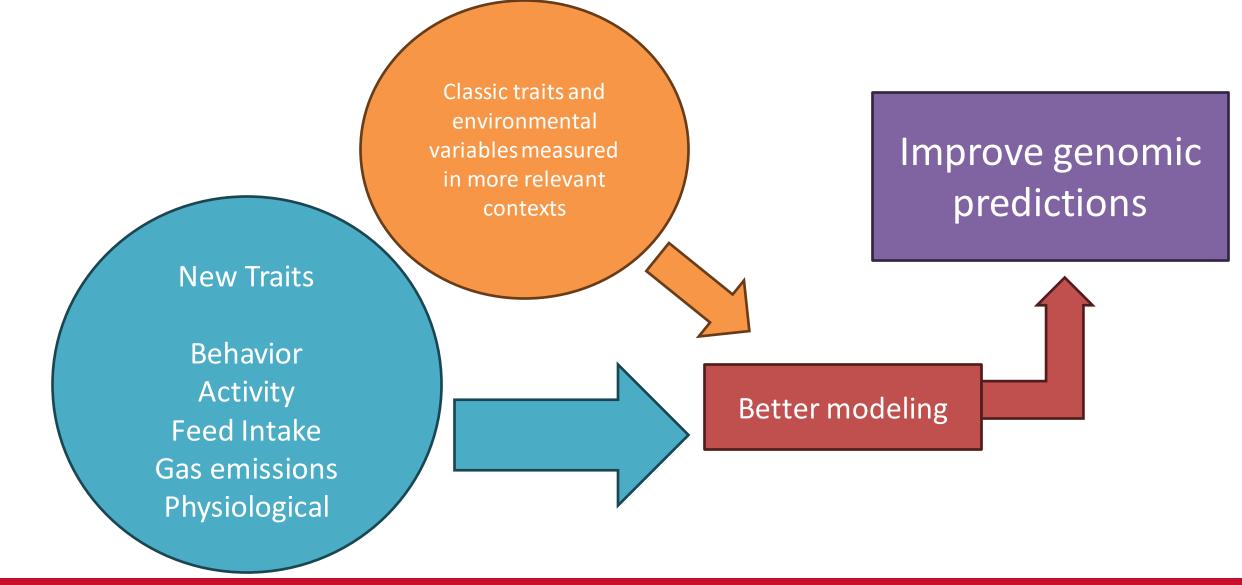
Journal of Animal Science, Volume 99, Issue 5, May 2021, skab042, https://doi.org/10.1093/jas/skab042 Published: 03 May 2021 Article history ▼



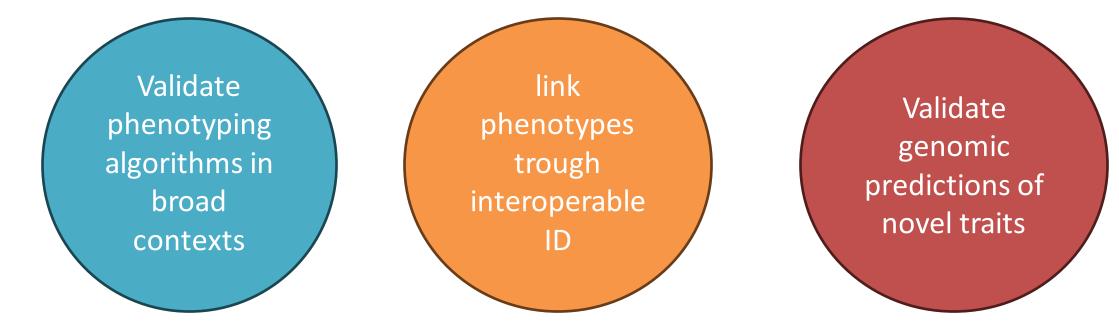
IOWA STATE UNIVERSITY

Department of Animal Science

Conclusions: benefits of sensor-based phenomics for breeders



Conclusions: Challenges in livestock phenomics



Work across disciplines, but remember we (breeders, animal scientists) understand better the sources of phenotypic variation. Integrate data streams from multiple sensors, keep working across disciplines.

This is where our realm, let's shine ©