Why Should Commercial Cattlemen be Interested in Genomics?

STITUTE OF GRICULTURE HE UNIVERSITY OF TENNESSEE HE UNIVERSITY OF TENNESSEE HE UNIVERSITY OF TENNESSEE HE UNIVERSITY OF TENNESSEE

MacG

What one place should every commercial herd be using genomics?

SIRE SELECTION!

The bull purchase is one of the <u>riskiest</u> decisions that a commercial cattle operation makes

Bull selection plays an outsized role in genetic progress

In a one-bull herd, the last three bull purchases account for 87.5% (on average) of the genetics of current calf crop!

Young sires do not have progeny information to back up EPDs

What is our goal in animal breeding?

In a large population of highly related individuals...

Across a range of unique environments and management...

How do we identify animals with the best genetic potential?

The "Breeder's Equation"

$$\Delta G/year = rac{\hat{r}_{BV,BV} \hat{\sigma}_{BV}}{L}$$

ΔG	= Genetic Progress	
r _{BV,BV}	= accuracy of selection	How w
i	= intensity of selection	metric
σ_{BV}	= genetic variation	animai
L	= generation interval	

How well does our "selection metric" represent the animal's actual genetic merit?

How often do we make the "correct" selection decision

Dissecting phenotypes for more accurate selection

Phenotype = Genotype + Environment

Heritable Genetic Variation

Environmental Variation

Dissecting phenotypes for more accurate selection

Phenotype

= Genotype Environment + Contemporary EPDS Groups

Once we have removed environmental variation from a phenotype, then we can start to figure out WHICH genetics an animal inherited from its parents.

Random chance complicates things further...

Mendelian sampling (MS) can account for over 50% of genetic variation in complex traits!

DNA Sample/Extraction

Calves outperforming parental expectation = Likely that bull got favorable "random sample" of parent's genes

Genomic tests increase EPD reliability in <u>UNPROVEN</u> animals

Trait	PE	Trait	PE
Calving Ease Direct	28	Heifer Pregnancy	17
Birth Weight	23	Calving Ease Maternal	18
Weaning Weight	27	Milk	35
Yearling Weight	22	Mature Weight	14
Dry Matter Intake	11	Carcass Fat	13
Yearling Height	15	Carcass Weight	4
Scrotal Circumference	13	Carcass Marbling	10
Docility	11	Carcass Ribeye	16

The bottom line for commercial producers:

Genomic testing reduces risk when purchasing unproven bulls

Genomics works!

Accelerates genetic gain across populations

Reduces generation interval

Remember, regardless of whether GE-EPD improves or gets worse, it is ALWAYS better than an un-enhanced EPD

The increase in accuracy gets us closer to the "true" genetic merit of an animal

Genomics for the commercial herd

Managing Expectations

What genomics <u>do</u>:

- Help estimate genetic merit
- Increase EPD accuracy in unproven animals
- Accelerate population genetic gain

What genomics <u>don't do</u>:

- Predict phenotypes for individuals
- Account for non-heritable (or non-additive) components of traits

Genomic testing for commercial producers

Genetic evaluations

Straight-bred commercial tests

Multi-breed commercial tests

Genomic testing for commercial producers

Single-Step GBLUP

$$\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z + H^{-1}\lambda \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

- Treated as animals in a "true" genetic evaluation
- Genomics allow integration into single-step
- Typically more accurate

Marker Effects (MBV)

- Marker effects estimated from "training population"
- Summed over genome
- Accuracy relies heavily on relationship to training animals

Relationship to Training Population is Essential

and measured phenotypes or performance populations??

https://beefgenomicprediction.ca/html/What-is-genomic-prediction.html

Commercial genomic tests work!

Multi-year commercial genomic test validation

Dam genomic scores vs. actual calf phenotypes

The "Breeder's Equation"

$$\Delta G/year = rac{\hat{r}_{BV,BV} \hat{\sigma}_{BV}}{L}$$

 $\begin{array}{ll} \Delta G &= \mbox{Genetic Progress} \\ r_{BV,BV} &= \mbox{accuracy of selection} \\ i &= \mbox{intensity of selection} \\ \sigma_{BV} &= \mbox{genetic variation} \\ L &= \mbox{generation interval} \end{array}$

How well does our "selection Weator peopletion of the implical's makeligenetic merit? generation?

Do genomics move the needle?

- Seedstock animals drive the genetic trends in commercial cattle sector
- Genomic test does generate some added genetic merit
- Overcoming genetic lag?

We MUST test more heifers than we plan to keep

Testing only heifers we already know we'll keep is just expensive confirmation bias

Genomics for feeder calf marketing

We can add value to feeder cattle through genomics and/or sire verification

https://tinyurl.com/commercialgenetics

Feeder calf genomic testing works

Trait	r	h ²
HCW	0.53	0.4 3
FAT	0.59	0.3 9
REA	0.58	0.4 5
LMY	0.58	0.4 3
	0.58 EARCH AGRICULTURE	0.4 3

Akanno et al. 2019 JAS

The big question: Return on Investment

- Trait heritabilities matter for utility of prediction with regards to predicting animal's future phenotype
- ROI depends on development costs/variation amongst tested individuals
- Use of genomics in marketing?
 Will buyers pay more for genetic potential?
- Genotyping cost <u>per replacement</u>
- Accuracy in tested population
- Opportunity cost:
 - Would this extra \$\$ be better spent on a better bull?

The "Next Frontier"

What happens when we have a <\$5 genomic test?

How do we leverage traceable commercial data into genomic evaluation phenotypes?

Beef x Dairy?

Genomics are an essential tool for bull selection

Commercial producers now have affordable genotyping products

Commercial producers can take advantage of genomics for heifer selection and feeder calf marketing, but ROI remains a bit unclear Reach out with questions!

trowan@utk.edu (865) 974-3190 @TroyNRowan

