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NGS genomic prediction
where we seem to be headed
sequence key individuals

impute lower density panels to sequence level
impute low pass data to sequence level 

genomic selection at sequence level



phasing and imputation 101
phasing – resolve haplotypes  

AA AB AB BB

unphased genotypes
SNP1 SNP2 SNP3 SNP4

phased genotypes
SNP1 SNP2 SNP3 SNP4

A A B B

A B A B

haplotype 1

haplotype 2

imputation – fill in the blanks
unimputed haplotypes
SNP1 SNP2 SNP3 SNP4

A - B B

- B - B

imputed haplotypes
SNP1 SNP2 SNP3 SNP4

A A B B

A B A B

uses
impute randomly missing genotypes
impute genotypes to match different SNP arrays
impute genotypes from low-density SNP array to high(er) density SNP array 
impute genotypic data from low pass sequencing



impute randomly missing genotypes

impute genotypes to match different 
SNP arrays

impute genotypes from low-density 
SNP array to high(er) density SNP 
array 

Imputed genotypic data



2 x 30GB
fastq

30x

37GB
bam

34GB
gvcf

1.5GB vcf – 8 million variants
24MB pgen / 7.5MB bed



computationally expensive
processing and storage

raw data storage
1000 samples (fastq)

2TB @   1x
60TB @ 30x

real example: 34 million variants and 62,000 thousand samples – 500GB (bed) / 8.5TB (vcf)

phasing in chunks
split across HPC ~1000 chunks 

(in batches of 50k samples)
16 per cores per chunk
160GB RAM per chunk
30 minutes per chunk

=
16000 cores + 160TB RAM

system: 55k cores + 317TB RAM
~21 days on a single machine

memory
30 million variants X 100,000 samples
2-bits – 0.75TB
bytes – 3TB
float – 6TB
double – 12TB



considerations
• raw and ready-to-use data storage and what to store
• compute requirements and software

• parallelization of I/O and processing 
• but still capped by system limits

• smarter programming, approximations (short cuts), dimensionality reduction…

• on the industry side – might only require storing and handling of vcf files, but 
• 70 – 120 million variants across species
• 10 – 20 million variants within a breed
• 5 – 10 million after some filtering 
• keep what?
• how to match data across breeds / organizations?
• how to revert back – e.g. new assembly?
• strategy for historical data and seq data – impute up or subset down?

• how good is the imputation?
• how useful is the imputed sequence data?



how good is the imputation?

it’s a numbers game
the larger the reference population the better

it’s a relationship game
the more connected the reference and target are the better

it’s an allele frequency game
the more common an allele is the better 

it’s a density game
the higher the marker coverage of the target is the better

pattern matching
more patterns -> higher probability 
of having a match

reference target



a bunch of ugly tables

data
9732 @ 50k
991 @ 700k
224 @ seq

6292 seq from other breeds
136 in common 50k/seq

AA AB BB
AA 97.14 2.65 0.22
AB 1.10 94.85 4.05
BB 0.03 1.07 98.91

AA AB BB
AA 95.69 3.98 0.33
AB 1.40 91.82 6.78
BB 0.02 1.09 98.89

6292+224

Nawaz et al. 2022

scenarios
50k –> 700k –> seq
50k –> seq
all seq
all seq minus breed of interest
only breed of interest
imputed for imputation

AA AB BB
AA 76.03 18.97 5.01
AB 12.29 56.95 30.76
BB 0.71 8.09 91.2

AA AB BB
AA 90.45 8.84 0.71
AB 5.15 82.15 12.7
BB 0.10 3.23 96.67

AA AB BB
AA 89.21 9.93 0.86
AB 4.63 85.82 9.54
BB 0.18 4.14 95.68

6292+0

0+88

6292+88

AA AB BB
AA 93.69 5.91 0.40
AB 2.47 89.54 8.00
BB 0.04 1.93 98.03

0+190

concordance for 136 
samples with seq data

one-step

two-step

cheating

honest

other+interest

mean concordance
other breeds    0.882
other+interest 0.948
interest (88)   0.945
interest (190)  0.963
imputed         0.983

AA AB BB
AA 97.11 2.67 0.22
AB 1.11 94.79 4.10
BB 0.03 1.07 98.90

imputed 50k - 9596



a couple of pretty equations

it’s all in the genomic relationship matrix (GRM)

GRM

𝐺𝐺 =
𝑀𝑀′𝑀𝑀

∑𝑖𝑖=1𝑚𝑚 2𝑝𝑝𝑖𝑖 1− 𝑝𝑝𝑖𝑖

𝑋𝑋′𝑋𝑋 𝑋𝑋′𝑍𝑍
𝑍𝑍′𝑋𝑋 𝑍𝑍′𝑍𝑍 + 𝜆𝜆𝐺𝐺−1

�𝑏𝑏
�𝑢𝑢

=
𝑋𝑋′𝑦𝑦
𝑍𝑍′𝑦𝑦



comparing the GRMs

r2=0.999r2=0.997

if the GRM does not change the EBVs do not change

without the breed of interest with the breed of interest 





how much do errors actually change the GRM?



changes to the GRM at different SNP panel densities



what has changed in the imputed data?
it is the change in G that will change the predictions

G50k x G700k   =  0.9884

G700k x Gseq =  0.9950

G50k x Gseq =  0.9839



gEBVs from sequence data
limited benefits if business as usual

changes in GRM after 100k are minimal

so, what’s the point?

50k → 700k (+1.5%) → sequence (+0.6%)
very small improvement in accuracy

accuracy of prediction 0.389 0.395 0.398
% increase accuracy 1.52 0.63
average of 100-fold cross validation | 1800 training | 518 validation



seq   red    blue
red 0.13   0.07
blue 0.13   0.19

70k   red    blue
red 0.09   0.07
blue 0.05   0.19

~3000

~150

seq helps with small sample sizes
seq helps with crossbreed prediction

larger benefits in multi-breed systems



…and a bit of AI for genomic prediction

AI generated image with DALL-E



ideally…

• in a perfect world we would know the true SNP 
associated to a trait or even better, the 
functional causal variants

• we would know the variants of large effect but 
also all the ones with small effects

• and we would use only them for making 
predictions… 

Use trait G instead of G
trait relationship matrix

gBLUP using only functional markers

genomic prediction as a feature selection problem



the ‘real’ (unknown) grm is very different from the full grm



spurious SNPs just add noise to the prediction



spurious SNPs just add noise to the prediction

• more SNPs than the actual functional 
variants only add noise

• even the truth is not enough if there is not 
enough power to estimate effects

• population size
• relatedness
• number of qtl



iterative weighted gblup with local search

• split population into 3 parts – training, internal testing and external 
testing

• perform weighted gBLUP and iterate until the weights converge

• find a rough number of SNP to use based on accuracy of sorted SNP

• test every SNP and check if it improves/worsens prediction accuracy in 
internal testing set – remove non-informative SNP

• refit final SNP set with gBLUP

• evaluate on external testing data
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noise if we get this right:
accuracies should hold across generations
can combine multiple breeds and crosses

costs can be reduced
computational burden can be reduced
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signal to noise ratio of a trait – genetic architecture



methods comparison

prediction is a function of sample size, genetic architecture, relatedness



machine learning for 
genomic prediction

MLP, CNN, DE, XGboost



one of these 
days in the 
future…



home sequencing

the future is kind of already here, just maybe a tad less glamorous



Nanopore MinION

• portable sequencer – pocket sized, USB connection, 87g
• can produce long and ultra-long reads

Ostrovski

don’t need to send samples to a lab for genotyping anymore



applications and limitations

onsite sequencing without a 
lab or specialized personnel

farm
determine parentage, breed 

composition, test for recessives and 
estimate breeding values 

turnover time from sample to 
knowledge of less than four hours (?)

disease testing
positive/negative 

results in a couple of 
hours

supply chain
origin of product can be 

regulated/certified on site by 
DNA testing (breed, 

provenance…)

food safety 
rapidly traced back through the 

supply chain by matching the 
DNA signature of the 

contaminated product with 
sequences stored in databases

cons
• takes some practice
• reagents not stable at room temperature, short shelf life
• still need to perform DNA extraction
• prices not yet competitive with lab genotyping
• data structures need to be in place for analyses
• great for a few samples but does not scale up
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questions?

Cedric Gondro
Professor of Computational and Quantitative Genomics
Michigan State University
Department of Animal Science
gondroce@msu.edu
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