Low-Pass Primer

Troy Rowan BIF Genomic Prediction Workshop December 19th, 2023

DNA variants — Genetic variation

SNPs- single base pair difference
at a location (e.g. A/C allele)Indel - multi-base pair insertion
or deletion at a location-ATAGTCCTAAG--ATAGTCCTA/GTCTTGCCAG-ATAGTCCTAAG--ATAGTCGTCTTGCCAG

Number of variants is dependent on the number (and diversity) of animals observed... Though not linear.

SNP Chip Genotyping

- Fixed locations genotyped
- Reduced representation of bovine genome (effective segments)
- SNP discovery needed (sequence large number of individuals)
- Probe design
- Ascertainment bias
- "Good enough" resolution

What is Low Pass Sequencing?

"Shotgun Sequencing"

1) Break genome into small chunks

2) "Read" DNA sequence of chunks

3) Use overlapping parts of sequences to determine where things belong

4) "Reference Genome" serves as backbone for future sequencing efforts

5) Subsequent sequencing still "reads" small chunks of DNA

6) No need for*de novo* assembly once reference is available

7) Align reads and identify differences (i.e. SNPs)

Reference Genomes

- Linear (for now) haploid representation of a species' genomic content
- Essential for ANY position eliant data generation/analysis
- Content is based or<u>one</u> (inbred) Hereford animal [Qominette)

$Coverage = rac{nReads imes len(read)}{Genome \ Size}$

Genotype Calling: More reads = More confidence

Reference: Read 1 Read 2 Read 3 Read 4 Read 5 Read 6

CCGTTAGAGTACAATTCGA TTAGAGAACAATTC CCGTTAGAGIA **GTTAGAGTACAA** TACAAT GAGTACA. TAGAGAACAATTCG

What is Low-Pass Sequencing?

Low-Pass sequencing

Low pass by itself may not be useful in genomic prediction...

... but imputation helps us fill in the missing variants

Wish that I was on ol' Rocky Top Down in the Tennessee hills Ain't no smoggy smoke on Rocky Top Ain't no telephone bills Once I had a girl on Rocky Top Half bear, other half cat Wild as a mink, but sweet as soda pop I still dream about that Rocky Top, you'll always be Home sweet home to me Good ol' Rocky Top Rocky Top, Tennessee Rocky Top, Tennessee

The Power of Imputation

Sufficient for resolving relationships (i.e., making a GRM)

Necessary for mapping "causal" variants in largescale datasets

Rowan et al. 2021

UTAGRESEARCH INSTITUTE OF AGRICULTURE THE UNIVERSITY OF TENNESSEE Whole genome density imputation ~30 million SNPs

GLIMPSE LowPass Imputation Algorithm

Rubinacci et al. 2023

What does accurate imputation need?

A large reference set of haplotypes High-coverage resequenced haplotypes Representative of target population

haplotypes

High-quality reference genome Physical positions matter

• Recombination map

Marchini et al. 2010

How accurate is imputation? It depends, largely on allele frequency!

Rowan et al. 2019

Imputation opportunity & challenge: Rare variation

Imputation will only impute what it "sees" in a reference panel

Representation matters!

How to build a reference panel?

Breed-specific

Multi-breed

Admixed populations will benefit from a multi-breed reference

- Admixed populations need representation across diversity of individuals
- Labelled population \neq Actual population
- Draw on haplotype diversity from other population in imputation reference
- Using multi-population reference significantly improves per-SNP and perindividual imputation accuracy across samples!

Rowan et al. 20 19

Imputation is just pattern matching!

850K Chip Imputation

Breed	Mean	Min	Мах
Gelbvieh	0.998	0.994	0.999
Hereford	0.997	0.991	0.999
Holstein	0.997	0.995	0.998
Simmental	0.996	0.984	0.999
Angus	0.995	0.959	0.999
Jersey	0.995	0.991	0.997
Limousin	0.989	0.930	0.996
Nelore	0.981	0.977	0.984
Brahman	0.941	0.932	0.961
Gir	0.903	0.869	0.948
Romagnola	0.874	0.855	0.896
N'Dama	0.763	0.747	0.803

Rowan et al. 2019

n =50 Gelbvieh

Advantages of Low Pass Sequencing

Potential for further cost reduction

Rare variation

No need for chip redesign or updates

SNP Discovery

CNV detection

Comparing and Contrasting Chip & LovPass

Sample Processing: Chip vs. Sequencing

Chip Processes:

Amplify DNA
Fragment DNA
Precipitate
Put on chip
Image chip

FIGURE 1: INFINIUM II ASSAY PROTOCOL

Sample Processing: Chip vs. Sequencing

Sequencing Processes:

- 1) Fragment DNA
- 2) Add & ligate adapters
- 3) Library Preparation (labor intensive + technically difficult)
- 4) Cluster amplification
- 5) Sequencing
- Data processing & 6) **Bioinformatics**

the base. This cycle is repeated "n" times to create a read

length of "n" bases.

Data scale in lowpass sequence data

Raw Data: FASTQ file

Every base pair sequenced (large file)

Imputation

Processed Data: VCF File

ONLY called & imputed SNPs w/ metadata (much smaller file)– Maybe ~30 M SNPs

##fileformat=VCFv4.1												
##TileDate=2009005 ##cource=myTamutationProgramV3 1												
##source=myimputationrograms.i												
<pre>##contig=<id=20,length=62435964,assembly=b36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="homo pre="" sapiens",<=""></id=20,length=62435964,assembly=b36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="homo></pre>												
##phasing=partial												
##INFO= <id=ns,number=1,type=integer,description="number data"="" of="" samples="" with=""></id=ns,number=1,type=integer,description="number>												
##INFO= <id=dp,number=1,type=integer,description="total depth"=""></id=dp,number=1,type=integer,description="total>												
##INFO= <id=af,number=a,type=float,description="allele frequency"=""></id=af,number=a,type=float,description="allele>												
##INFO= <id=aa,number=1,type=string,description="ancestral allele"=""></id=aa,number=1,type=string,description="ancestral>												
##INF0= <id=db,number=0,type=flag,description="dbsnp 129"="" build="" membership,=""></id=db,number=0,type=flag,description="dbsnp>												
##INF0= <id=h2,number=0,type=flag,description="hapmap2 membership"=""></id=h2,number=0,type=flag,description="hapmap2>												
##FILTER= <id=q10,description="quality 10"="" below=""></id=q10,description="quality>												
##FILTER= <id=s50,description="less 50%="" data"="" have="" of="" samples="" than=""></id=s50,description="less>												
##FORMAT= <id=gt,number=1,type=string,description="genotype"></id=gt,number=1,type=string,description="genotype">												
##FORMAT= <id=gq,number=1,type=integer,description="genotype quality"=""></id=gq,number=1,type=integer,description="genotype>												
##FORMAT= <id=dp,number=1,type=integer,description="read depth"=""></id=dp,number=1,type=integer,description="read>												
##FORMAT= <id=hq,number=2,type=integer,description="haplotype quality"=""></id=hq,number=2,type=integer,description="haplotype>												
#CHROM I	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA00001			
20	14370	rs6054257	G	Α	29	PASS	NS=3; DP=14; AF=0.5; DB; H2	GT:GQ:DP:HQ	0 0:48:1			
20	17330	• • • • • • • • • • • • • • • • • • •	Т	Α	3	q10	NS=3; DP=11; AF=0.017	GT:GQ:DP:HQ	0 0:49:3			
20	1110696	rs6040355	Α	G,T	67	PASS	NS=2; DP=10; AF=0.333, 0.667; AA=T; DB	GT:GQ:DP:HQ	1 2:21:0			
20	1230237		Т	÷	47	PASS	NS=3; DP=13; AA=T	GT:GQ:DP:HQ	0 0:54:1			
20	1234567	microsatl	GTC	G, GTCT	50	PASS	NS=3; DP=9; AA=G	GT: G0: DP	0/1:35:4			

Raw Data Scale: Chip vs. Sequencing

100K Array Final Report = 0.003 GB

1 X FASTQ = 2.9 GB

Processed Data Scale: Chip vs. Sequencing

25,000 animals on 50K Array BCF= 17.7 MB

Imputed BCF w/ 30M variants = 10.6 GB

Storage Questions

- 1) What do we store?
 - a) FASTQs (raw data) BIG files,
 - b) Imputed sequence- Takes time & resources to impute
 - c) "Core" SNP set(s)
- 2) How long do we store it?
- 3) Do we re-impute? How Often?
- 4) How do we integrate with chip data?

How do we use this "extra" data?

1) <u>Same as we always have</u> xtract same markers that we use with SNP chips

- a) Immediately allows low pass to be congruent with existing evaluations
- b) No extra value extracted from lowpass data
- 2) Throw more variants in the mixlf 50,000 is good, 30 million is better
 - a) Limited evidence that this actually helps in ssGBLUP settings
 - b) Var_{G} captured by 50K is largely sufficient for genomic prediction
- 3) <u>Prioritize variants</u> Find biologically important variants (e.g., causal/functional) use these to (hopefully) improve predictions
 - a) Varying results- May not improve prediction accuracy but may improve portability
 - b) Requires that modeling can handle nomormal variant effects (e.g., BayesRC, etc.)

Improving genomic predictions with biological knowledge

Variant discovery & prioritization

Functional classification

Trait associations

Low-pass sequencing and imputation is the next evolution of cattle genotyping technologies

Quality imputation relies on representative reference panels

Genomic prediction machinery will need to adapt to take full advantage of low-pass imputed genotypes Reach out with questions!

trowan@utk.edu (865) 974-3190 ∑ @TroyNRowan

