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• “We don’t need no stinking genes!”
Curt Van Tassell, PAG 2008

• “Genotypes are actually phenotypes.” [paraphrased]

Mark Thallman, sometime around 2001

• “I shall try not to use statistics as a drunken man uses 
lamp-posts, for support rather than for illumination; and I 
shall try not to let my pen stray too far from the tethers of 
sanity of things seen…”

Andrew Lang, ~1937



Imputation
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These are easy
but the minority

These are hard
but the VAST 

majority



Outline
• Sources of error

• Multiallelic Chip/Sequence
• Private alleles (not really errors but misconceptions)

• Genotype Recall and Precision
• Better variants

• GATK variant calling & VQSR
• Deep Variant

• Better phasing

529 total slides if you want to know when this will end 
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Estimation of an unknown true genotype

~99.5% accuracy/reproducibility
800K markers = 4,000 errors PER sample

Q30 = 99.9% accuracy
20X coverage = ~60 Gb = ~60M single base errors
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Multiallelic Chip
• 1000 Bulls Run9 TAUIND Tranche90.0-99.0 (excluding DoNotAnalyze)

SNP50 SNP50V3 HD GGPF250
N 52,781 52,988 758,410 205,015
Multiallelic 1,964 1,910 19,853 6,044
Multiallelic% 3.72% 3.60% 2.62% 2.95%
maf>0.005 587 556 2,612 963
maf>0.01 472 447 1,804 704
maf>0.05 185 175 621 206
maf>0.005 1.11% 1.05% 0.34% 0.47%
maf>0.01 0.89% 0.84% 0.24% 0.34%
maf>0.05 0.35% 0.33% 0.08% 0.10%
maf>0.005 0.0056% 0.0052% 0.0017% 0.0023%
maf>0.01 0.0089% 0.0084% 0.0024% 0.0034%
maf>0.05 0.0175% 0.0165% 0.0041% 0.0050%

Class Count
All multiallelic 6,336,169
PASS 2,476,198
PASS Non-Major allele >1% 2,051,428
PASS Minor allele >1% 286,115
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“While genome-wide association studies that involve more than one breed typically find 
multiple breed-specific associations, based on our results it seems unlikely that breed-specific 
associations arise from the low prevalence variants. Instead, breed-specific associations 
depend on the effect of the differences in allele frequencies, linkage disequilibrium 
structure, and other genetic background features on the power to detect the effect of 
prevalent variants across populations.”

Private alleles:
Are breeds as distinct as we think?
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Private alleles
ANG BSW HOL JER NRC

Chr24 Filter N=265 N=262 N=930 N=179 N=345
Total Variants 443,640 454,414 496,121 377,398 459,060
Private Biallelic AC>1 8,987 19,470 11,098 4,570 10,869
Private AF>0.05 3,355 8,364 1,376 2,515 3,003
Private Biallelic AC>1 2.03% 4.28% 2.24% 1.21% 2.37%
Private AF>0.05 0.76% 1.84% 0.28% 0.67% 0.65%

• Number of private alleles proportional to genetic distance
• As you increase N within breed or N across breeds the 

number of private alleles decreases
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Genotype Recall & Precision
• 3,659 samples in all three Runs, compare calls between runs
• Run9 considered “TRUTH”
• Recall = TP / (TP + FN)

• How many variants did you miss in the previous run
• Precision TP / (TP + FP)

• How many variants in previous run were not real variants

~1.5M CPU hours (a LOT of data not show)
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Mendelian error rate
Optimal vs Default vs Run9



Can we produce even
better Genotypes?
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Model Starting Point

Re-Train Model

Select New Model

Test Model = Call Variants

Evaluate Model

DVGATK

Deep Variant: TrioTrain

19 TEST samples
13

14 Trios

https://github.com/jkalleberg/DV-TrioTrain/

https://github.com/jkalleberg/DV-TrioTrain/
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Figure 1.3) Model training performance across phases
For each trio, the first iteration begins with the father by giving labeled examples from CHR 1 – 29, X. Pedigree 
information is not explicitly provided to the model; instead, the checkpoint that achieves the maximum F1-Score in 
the offspring’s labeled examples is chosen as the starting point for the next iteration. 



15

Figure 1.4) Comparing variants from test genomes. 

Each box-and-whisker represents the F1-score with an 
independent set of bovine samples previously unseen 
by the model 
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Figure 1.5) Comparing variants from human genomes. 

Each box-and-whisker represents the F1-score with the GIAB human samples (n = 6). We 
compared the variants produced by each model against their respective GIAB v4.2.1 
benchmark sets using hap.py. 
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Figure 1.6) Inheritance error rate in human and bovine trios. 

Mendelian Inheritance Errors (MIE) were identified in PASS variants in the autosomes and X chromosome for two 
GIAB human trios and six bovine hybrid-cross trios.

Final cow model produces fewer Mendelian errors than human model

Conclusion: We need better truth sets for cows!
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The objectives of this proposal are to:
1. Identify an optimal set of individuals from those available in the Bovine Pangenome 

Consortium and PanEpigenome projects to develop cattle Reference Materials.
2. Generate primary and immortalized cell lines for the Reference Material samples to enable 

distribution to the community for future use.

3. Aggregate and generate sequence data for Reference Material samples to produce a 
definitive truth set for variant calls (SNP, INDEL, SV) to serve as the authoritative 
benchmark resources for the community.

4.Develop best practices guidelines and standard procedures to support the 
genomics community’s use of the generated Reference Materials and provide a roadmap for 
replicating our research in other species.

https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=R=98382&format=WEBLINK

PARTNERSHIP: DEVELOPMENT OF GENOMIC REFERENCE MATERIALS FOR CATTLE
GIAB-Ag

https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=R=98382&format=WEBLINK


What about structural 
variants?
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Mapping Copy Number Variants Across The Cattle Genome
Jacob Rissman

• ~61,000 SNP Chip Samples
• 89 Different Breeds
• 652 Trios

• BOVG50V1 (19 trios)
• SNP50 (282 trios)
• GGPF250 (351 trios)



Comparisons Across Breeds
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Comparisons Across Breeds
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Confident Final CNVR Call Set
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1,316 CNVRs created
8.51% of the genome
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POPULATION SCALE CHARACTERIZATION OF STRUCTURAL VARIANTS
Jenna Kalleberg-Ridge

Cue: a deep learning framework for SV calling and genotyping
https://github.com/PopicLab/cue

DUPLICATIONS

DELETIONS
DUPLICATIONS
INVERSIONS

INVERSIONS

DELETIONS
DUPLICATIONS
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TYPE CLASS
DEL INV DUP IDUP HET HOMALT TOTAL

All Samples [1]

Count 1,996,215 316,497 172,806 9,431 2,029,540 465,409 2,494,949
% Total 80.01% 12.69% 6.93% 0.38% 81.35% 18.65%

Mean / Genome 298.34 47.44 25.90 2.17 303.32 69.56 374
Median / Genome 310 36 25 2 312 57

Excluding Outliers [2]

Count 1,991,646 314,814 172,374 9,356 2,024,380 463,810 2,315,816
% Total 80.04% 12.65% 6.93% 0.38% 81.36% 18.64%

Mean / Genome 298.15 47.255179 25.87 2.16 303.05 69.43 326
Median / Genome 310 36 25 2 312 57

Samples with Average Coverage ≥ 7.5x [3]

Count 1,763,271 290,873 154,255 8,740 1,787,070 430,069 2,217,139
% Total 79.53% 13.12% 6.96% 0.39% 80.60% 19.40%

Mean / Genome 351.74 58.05 39.54 2.88 412.50 132.23 452
Median / Genome 349 47 30 2 354 73

Samples with Average Coverage ≥ 15x [4]

Count 804,518 172,607 76,787 5,039 801,893 257,058 1,058,951
% Total 75.97% 16.30% 7.25% 0.48% 75.73% 24.27%

Mean / Genome 413.85 88.84 30.80 2.28 412.50 132.23 536
Median / Genome 409 78 40 3 410 123

Table 2.1) Stratified SV counts. Using summary metrics from the per-sample VCFs produced with the 
UMAGv1 cohort, we stratified by SV type and genotype class to observe how different QC thresholds 
changed SV calls.
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Figure 2.1) Sample coverage versus DEL counts. After excluding outliers, each black circle represents the number of 
deletions for each sample within the UMAGv1 cohort. Linear regression trend lines were created for three different 
coverage categories. Red for low coverage (<7.5x),  yellow for moderate coverage (≥7.5x – <15x), and green for high 
coverage (≥15x) [respective Pearson’s r = 0.51, 0.18, 0.09]. Overall, counts plateau around 400 DEL per genome, with 
expected variation between individuals.
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Estimation of ancestral alleles
Hunter McConnell

Chrom Pos REF ALT AF_Banteng AF_Bison AF_Gaur AF_Yak

25 735 G A 0 0 0 0

25 18924 C T 0.2786 0.554 0.5592 0.583

25 31877 A G 0.98 0.914 0.956 0.224

Chrom Pos REF ALT AF_Bin_Banteng AF_Bin_Bison AF_Bin_Gaur AF_Bin_Yak

25 735 G A 1 1 1 1

25 18924 C T 2 3 3 3

25 31877 A G 5 5 5 2
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• 198 Bovid genomes
• Chromosome 25
• 2,046,097 Called Variants

3.5x Previous Attempts
175,931,726 × 0.8 = 141,603,390

Dominette is a good representation of bovids
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Phasing
Shapeit5 Lots of parameters, scales sub-linearly
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Default: 0.155%
Best: 0.124%
Diff: 0.031%
%Diff: 20%

Shapeit5
Phasing
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Sequence Phasing
• 6,137 genomes
• 212,942,459 variants
• Ne 300 & 30,000
• Recombination Map, LD Map, No Map
• 5 replicates
• With pedigree & without pedigree
• Each chromosome phased 60 times

Phasing



118766 UMCUSAF000000118766

Version nVariants
nMendelian
Errors nSwitch Switch%

A 62,418 1019 609 0.98
B 56,541 670 405 0.72
C 51,318 7 0 0
D 51,321 5 0 0

118766

A. 1kbulls Run8 Beagle phased
B. 1kbulls Run8 Eagle phased
C. UMAG2 Shapeit5 Ne 300
D. UMAG2 Shapeit5 Ne 30,000

Phasing

32
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assay num_loci num_samples
ANGGS 48,434 21,982
BOVG50V1 45,606 112,664
BOVGGPV3K 2,837 175,647
BOVLDC 6,819 289,009
BOVLDV2A 7,822 273,092
BOVMD 50,135 71,881
DAIRYULDB 4,047 65,021
GGP100V1 92,442 25,556
GGP90KT 75,970 40,379
GGP9K 8,564 143,532
GGPF250 203,920 41,016
GGPHDV3 137,390 35,198
GGPIND35 34,984 22,076
GGPLDV1 6,778 289,253
GGPLDV3 25,658 71,617
GGPLDV4 29,138 68,889
GGPRANULD 28,908 126,867
GGPSIMULD 29,161 121,517
HD_GGPF250 924,261 22,031
HD 756,704 10,592
IDBV3 50,282 14,703
IND90KH 73,609 22,117
SNP50 52,642 73,165
WBSV1 49,388 25,827
ZLD2 17,373 21,999
ZLD4 19,657 21,995
ZLD5 33,494 21,994
ZMD2 60,106 21,978
ZOETIS1 50,062 24,600

SNP-Chip Phasing
• 29 assay
• # Samples 10,529 – 289,253
• # Loci 2,837 – 924,261
• DepthCommon 4, 8, 16, 32
• McMcIter 15, 25, 45
• Ne 300 & 30,000
• Recombination Map, LD Map, No Map
• 5 replicates
• With pedigree & without pedigree

• Each chromosome phased 240 times
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Summary• Sources of error
• Multiallelic Chip/Sequence

• Probably not a huge issue but is a source of error
• Private alleles

• Cows are cows, sample size is far more important
• Genotype Recall and Precision

• Increased sample size = “new” variants in “old” samples
• Better variants

• GATK variant calling & VQSR
• Simply picking appropriate values produces more and better data

• Deep Variant
• Limited by truth set, better genotypes soon

• Structural Variants
• A LOT of additional variation we are ignoring, mostly rare

• Better phasing
• Better reference panels will produce better imputation



Imputation
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These are easy
but the minority

These are hard
but the VAST 

majority
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Phasing



Confident Final 
CNVR Call Set

GC Model PFB Sample HMM

CNVs 
Detected

Pedigree 
Based CNVs

If Trios

QC Filtering

CNVs Cleaned

Overlaps 
Merge

Overlaps 
Clustered

CNVRs 

Trio 
Concordance  CNC  

Requirements
1. CNVR must be detected in 

at least 2 Assays.
2. CNVR must be present in 

either the HD or GGPF250 
Assay

3. Frequency of CNVR > 
0.01% across all samples

38

Final Confident 
CNVR Call Set 

CNVR Call Set
(One Per Assay)  

CNVR identification added 
to CNV calls



Comparisons Across Assays
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GGPF250 Comparing Breeds Using Jaccard 
Similarity Coefficient 

40
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Tranche 99.00 Ti/Tv 2.49
Default  94,611,143
Optimal 116,026,576 (+22.6%)

“free” data ^^
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