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III

* “We don’t need no stinking genes
Curt Van Tassell, PAG 2008

e “Genotypes are actually phenotypes.” paraphraseq)
Mark Thallman, sometime around 2001

* “I'shall try not to use statistics as a drunken man uses
lamp-posts, for support rather than for illumination; and |
shall try not to let my pen stray too far from the tethers of

sanity of things seen...”
Andrew Lang, ~1937



Imputation
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A multi-breed reference panel and additional ==
rare variants maximize imputation accuracy

These are easy .

but the minority in cattle

A Troy N. Rowa n'®, Jesse L. Hoff' @, Tamar E. Crum’ ,Jeremy F. Tay\oﬂ , Robert D. Schnabe
and Jared E. Decker"”

These are hard
but the VAST
majority
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Outline

e Sources of error
» Multiallelic Chip/Sequence
* Private alleles (not really errors but misconceptions)
* Genotype Recall and Precision
* Better variants
* GATK variant calling & VQSR
* Deep Variant
* Better phasing

29 total slides if you want to know when this will end 2>



Estimation of an unknown true genotype

Figure 2: Assay Design for Iselect Whole-Genome
Genotyping

lllumina sequencing

Infinium | Design, Infinium || Chemistry nfinium Il Design, Infinium Il Chemistry

"o Based on reversible terminator chemistry

Sequencing by synthesis (SBS)

All 4 fluorescently labeled bases present

&
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cleavage
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Infinium Il Assay chemistry is used for all iSelect Custom Infinium Assays ) / i ncorporation

with either Infinium I or Infinium Il probe design. Infinium | probe design i :"’T'T'-'””"

i - Q neLe A S T P, e Deblock

!ncludee two bead types per bI\IPllucu:,. Infinium Il probe dd‘cﬂgll requires S Flor Removal

just one bead type per locus. Infinium | probes end at the queried SNP

base. Infinium Il probes end at the base proceeding the queried SNP. This G 3 BioFrontiers
method allows unlimited access for SNP interrogation. : Sequencing Facility

~99.5% accuracy/reproducibility Q30 = 99.9% accuracy
800K markers = 4,000 errors PER sample 20X coverage = ~60 Gb = ~“60M single base errors




Multiallelic Chip

e 1000 Bulls Run9 TAUIND Tranche90.0-99.0 (excluding DoNotAnalyze)

Class Count SNP50 SNP50V3 HD GGPF250
ﬁxs';‘“'t'a"e"c gf‘;gigg N 52,781 52,988 758,410 205,015
gﬁg: wn?:o':ﬂ:ﬂeaililf >1% 2,051,428 Multiallelic 1,964 1,910 19,853 6,044
Multiallelic% 3.72% 3.60% 2.62% 2.95%
maf>0.005 587 556 2,612 963
maf>0.01 472 447 1,804 704
maf>0.05 185 175 621 206
maf>0.005 1.11% 1.05% 0.34% 0.47%
maf>0.01 0.89% 0.84% 0.24% 0.34%
maf>0.05 0.35% 0.33% 0.08% 0.10%
maf>0.005 0.0056% 0.0052% 0.0017% 0.0023%
maf>0.01 0.0089% 0.0084% 0.0024% 0.0034%
maf>0.05 0.0175% 0.0165% 0.0041% 0.0050%
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Private alleles:

Are breeds as distinct as we think?

Ros-Freixedes et al. G £
Genetics Selection Evolution (2022) 54:39 S ene .I s
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Rare and population-specific functional
variation across pig lines

Roger Ros-Freixedes ,Bruno D.Valente®, Ching-Yi Chen?, William O. Herring®, Gregor Gorjanc’,
John M. Hickey' and Martin Johnsson'*

“While genome-wide association studies that involve more than one breed typically find
multiple breed-specific associations, based on our results it seems unlikely that breed-specific
associations arise from the low prevalence variants. Instead, breed-specific associations
depend on the effect of the differences in allele frequencies, linkage disequilibrium
structure, and other genetic background features on the power to detect the effect of
prevalent variants across populations.” 8




Private alleles

ANG BSW HOL JER NRC
Chr24 Filter N=265 N=262 N=930 N=17/9 NERYI)
Total Variants 443,640 454,414 496,121 377,398 459,060
Private Biallelic AC>1 8,987 19,470 11,098 4,570 10,869
Private AF>0.05 3,355 8,364 1,376 2,515 3,003
Private Biallelic AC>1 2.03% 4.28% 2.24% 1.21% 2.37%
Private AF>0.05 0.76% 1.84% 0.28% 0.67% 0.65%

 Number of private alleles proportional to genetic distance
* Asyou increase N within breed or N across breeds the

number of private alleles decreases



Genotype Recall & Precision

3,659 samples in all three Runs, compare calls between runs
Run9 considered “TRUTH”
Recall =TP / (TP + FN)

 How many variants did you miss in the previous run
Precision TP / (TP + FP)

 How many variants in previous run were not real variants

1000 Bulls SNPs Pass (N=3,659) 1000 Bulls SNPs Pass (N=3,659)

500,001

LT+t =

400,001

[e s naleels e wwslos way

L]

300,001

COOODOOOO00 oomof)oco:xvl}ém‘#

o 200,001
100,001

9-8 = - 9-8

B Recall M Precision M Bl truth_fn_homalt

~1.5M CPU hours (a LOT of data not show)



Mendelian error rate
Optimal vs Default vs Run9

Moderate Coverage Trio SNP Cumulative Error Rate

[ DEFAULT TotalErrorRate [l Optimal TotalErrorRate Run9 TotalErrorRate

|
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Can we produce even
better Genotypes?
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G Deep Variant: TrioTrain

Model Starting Point 14 Trios

')y

GATK . S Test Model = Call Variants

19 TEST samples
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https://github.com/jkalleberg/DV-TrioTrain/

F1-Score
o
o
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Trio — Training Iteration

—— HomRef —/—Het ——HomVar —O— SNPs —O—INDELs - =X~ - Average ® Father ® Mother

Figure 1.3) Model training performance across phases

For each trio, the first iteration begins with the father by giving labeled examples from CHR 1 — 29, X. Pedigree
information is not explicitly provided to the model; instead, the checkpoint that achieves the maximum F1-Score in
the offspring’s labeled examples is chosen as the starting point for the next iteration.




DT1.4-default

F1-Score

‘ Exising Models ‘ Phase 1 — Phase 2 ‘ Phase 3

Figure 1.4) Comparing variants from test genomes.

Each box-and-whisker represents the F1-score with an

independent set of bovine samples previously unseen
by the model
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DT1.4—-default
DV1.4-WGS.AF
DV1.4—-default
Phase 1

Phase 2

Phase 3

Phase 4

Q oV
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NN

F1-Score

-.- Exising Models -.- Phase 1 -.- Phase 2 -.- Phase 3 -.- Phase 4

Figure 1.5) Comparing variants from human genomes.

Each box-and-whisker represents the F1-score with the GIAB human samples (n = 6). We
compared the variants produced by each model against their respective GIAB v4.2.1
benchmark sets using hap.py.
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1.25% -

1.00% -
Final cow model produces fewer Mendelian errors than human model
S 0.75% A
)
14
L
= 0.50% -
0.25% -
000% fL -_L [ ] L_
Human Human Bovine Bovine Bovine
Chinese Ashkenazi AA/BR YK/HI BI/SI
Trio
] DT1.4-default DV1.4-WGS AF DV1.4-defaut  [I] Phase1  [I] Phase2  [l] Phase3 [ Phase 4

Figure 1.6) Inheritance error rate in human and bovine trios.

Mendelian Inheritance Errors (MIE) were identified in PASS variants in the autosomes and X chromosome for two
GIAB human trios and six bovine hybrid-cross trios.

Conclusion: We need better truth sets for cows!




PARTNERSHIP: DEVELOPMENT OF GENOMIC REFERENCE MATERIALS FOR CATTLE
GIAB-Ag

The objectives of this proposal are to:
1. Identify an optimal set of individuals from those available in the Bovine Pangenome
Consortium and PanEpigenome projects to develop cattle Reference Materials.

2. Generate primary and immortalized cell lines for the Reference Material samples to enable
distribution to the community for future use.

3. Aggregate and generate sequence data for Reference Material samples to produce d

definitive truth set for variant calls (SNP, INDEL, SV) to serve as the authoritative
benchmark resources for the community.

4. Develop best practices guidelines and standard procedures to support the

genomics community’s use of the generated Reference Materials and provide a roadmap for

replicating our research in other species.
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https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=R=98382&format=WEBLINK

What about structural
variants?

19



Mapping Copy Number Variants Across The Cattle Genome
Jacob Rissman

« ~61,000 SNP Chip Samples
e 89 Different Breeds

* 652 Trios
e BOVG50V1 (19 trios)
* SNP50 (282 trios)
* GGPF250 (351 trios)

# Samples

BOVG50V1 (50K)

SNP50 (SNP50_B) (50k)
SNP50V3 (SNP50_C) (50K)
GGP100V1 (100k)

GGPF250 (250k)

HD (777k)

GGPF250 and SNP50
HD and GGPF250
HD and SNP50

20



Comparisons Across Breeds

HD Chr 15 Cluster Position
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Comparisons Across Breeds
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Confident Final CNVR Call Set

Frequency of Final CNVR Call Set

1,316 CNVRs created
8.51% of the genome

E
=
=
=
o
=
=
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POPULATION SCALE CHARACTERIZATION OF STRUCTURAL VARIANTS

Jenna Kalleberg-Ridge
Cue: a deep learning framework for SV calling and genotyping
https://github.com/PopiclLab/cue

READ-DEPTH SPLIT-READ
| READ-PAIRS |

DELETIONS DELETIONS
DUPLICATIONS DUPLICATIONS
INVERSIONS

LL+RR PAIRS RL PAIRS

INVERSIONS DUPLICATIONS
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Table 2.1) Stratified SV counts. Using summary metrics from the per-sample VCFs produced with the
UMAGvV1 cohort, we stratified by SV type and genotype class to observe how different QC thresholds
changed SV calls.

DEL

1,996,215
80.01%
298.34

310

1,991,646
80.04%
298.15

310

1,763,271
79.53%
351.74

349

804,518
75.97%
413.85

409

INV

316,497
12.69%
47.44
36

314,814
12.65%
47.255179
36

290,873
13.12%
58.05
47

172,607
16.30%
88.84
78

DUP

172,806
6.93%
25.90

25

172,374
6.93%
25.87

25

154,255
6.96%
39.54

30

76,787
7.25%
30.80

40

HET

2,029,540
81.35%
303.32

312

2,024,380
81.36%
303.05

312

1,787,070
80.60%
412.50

354

801,893
75.73%
412.50

410

HOMALT

465,409
18.65%
69.56
57

463,810
18.64%
69.43
57

430,069
19.40%
132.23

73

257,058
24.27%
132.23

123

TOTAL

2,494,949

374

2,315,816

326

2,217,139

452

1,058,951




Legend
— Low
Moderate
High

DEL count

|
A
5

Mean Coverage

Figure 2.1) Sample coverage versus DEL counts. After excluding outliers, each black circle represents the number of
deletions for each sample within the UMAGv1 cohort. Linear regression trend lines were created for three different
coverage categories. Red for low coverage (<7.5x), yellow for moderate coverage (>7.5x — <15x), and green for high

coverage (215x) [respective Pearson’s r =0.51, 0.18, 0.09]. Overall, counts plateau around 400 DEL per genome, with
26

expected variation between individuals.
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Estimation of ancestral alleles

Hunter McConnell

735 G
18924 C 0.2786 0.554 0.5592

31877 A 0.98 0.914 0.956

735 @G A

18924 C T

31877 A G
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* 198 Bovid genomes 175,931,726 X 0.8 = 141,603,390

e Chromosome 25 3.5x Previous Attempts

e 2,046,097 Called Variants

Dominette is a good representation of bovids

Confidence

47626 37925
2% 2%

165391

89% 363527

18%
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Phasing

Shapeit5 Lots of parameters, scales sub-linearly

Phasing common variants (mar = 0.1%) b Phasing rare variants (mac= 1} Phasing singletons (mac- 1) Calling compound heterozygotes

Target
Individual

*

Prabability

Haplotype
Selection
180 and rara
alfele sharing

Comman variant haplotypes

Shared Identical-By-Descent

. % ek
Forcing Homozygosity

— [Common Yariants —

%k Minor allele at rare variant Loss-of-Function

Variants (LoF)

Figure 1: Rationale of SHAPEITS. From left to right. (a) All samples are phased at common variants (MAF =z 0.1%). (b) Phasing of a given rare
variant onto the haplotypes at common variants. Conditioning haplotypes used in the estimation share long matches with the target (in green
and blue) and are not monomorphic at the rare variant. (c) Singleton phasing by assigning the new allele on the target haplotype with the
shortest match. (d) Compound heterozygous event mapping based on the rare variant phasing (a-c).




Trio Avg SER%

Shapeits

Replicates

Phasing

0.2

0.19

0.18

0.17

0.16

0.15

0.14

0.13

0.12

0.11

0.1

Default: 0.155%
Best: 0.124%
Diff: 0.031%
%Diff:  20%
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Phasing

Sequence Phasing

* 6,137 genomes

e 212,942,459 variants

* N, 300 & 30,000

 Recombination Map, LD Map, No Map
* 5replicates

* With pedigree & without pedigree
 Each chromosome phased 60 times

31



118766 UMCUSAF000000118766

A. 1kbulls Run8 Beagle phased
B. 1kbulls Run8 Eagle phased

C. UMAG2 Shapeit5 Ne 300
D. UMAG2 Shapeit5 Ne 30,000

Phasing

nMendelian
Version [nVariants |Errors nSwitch [Switch%
A 62,418 1019 609 0.98
B 56,541 670 405 0.72
C 51,318 7 0] 0]
D 51,321 5 0) 0]
UMCUSAEQ80(
118766
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BOVG50V1
BOVGGPV3K
BOVLDC
BOVLDV2A
BOVMD
DAIRYULDB
GGP100V1
GGPIOOKT
GGP9K
GGPF250
GGPHDV3
GGPIND35
GGPLDV1
GGPLDV3
GGPLDV4
GGPRANULD
GGPSIMULD
HD_GGPF250

num_loci

48,434
45,606
2,837
6,819
7,822
50,135
4,047
92,442
75,970
8,564
203,920
137,390
34,984
6,778
25,658
29,138
28,908
29,161
924,261
756,704
50,282
73,609
52,642
49,388
17,373
19,657
33,494
60,106
50,062

num_samples
21,982
112,664
175,647
289,009
273,092
71,881

SNP-Chip Phasing

* 29 assay

 # Samples 10,529 — 289,253

 #loci 2,837 —-924,261

e DepthCommon 4, 8§, 16, 32

* McMclter 15, 25, 45

* N, 300 & 30,000

* Recombination Map, LD Map, No Map
* 5replicates

* With pedigree & without pedigree

* Each chromosome phased 240 times
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Summary

e Sources of error
* Multiallelic Chip/Sequence

* Probably not a huge issue but is a source of error
* Private alleles

* Cows are cows, sample size is far more important
 Genotype Recall and Precision

* Increased sample size = “new” variants in “old” samples

e Better variants
 GATK variant calling & VQSR

* Simply picking appropriate values produces more and better data
* Deep Variant

* Limited by truth set, better genotypes soon
e Structural Variants

* A LOT of additional variation we are ignoring, mostly rare
* Better phasing

* Better reference panels will produce better imputation .



Imputation

Rowan et al. Genet Sel Evol (2019) 51:77 G ti

https://doi.org/10.1186/512711-019-0519-x enetics
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RESEARCH ARTICLE Open Access
q

A multi-breed reference panel and additional ==
rare variants maximize imputation accuracy

These are hard
These are easy

but the VAST T :
.. but the minority in cattle
majority ) | i}
A Troy N. Rowan'®, Jesse L. Hoff'®, Tamar E. Crum'®, Jeremy F. Taylor' ®, Robert D. Schnabel'
and Jared E. Decker'”

Relative proportion of markers

35




36



Phasing

Modeling Linkage Disequilibrium and Identifying

Recombination Hotspots

Using Single-Nucleotide Polymorphism Data

Na Li* and Matthew Stephens'

*Department of Biostatistics and "Department of Statistics, University of Washington, Sealile, Washington 98195

Manuscript received January 30, 2003
Accepted for publication August 11, 2003

Despite the ease with which coalescent models can be
simulated from, using these models for inference remains
extremely challenging. For example, consider the prob-
lem of estimating the underlying recombination rate in
a region, using data from a random population sample.
[t follows from coalescent theory that population sam-
ples contain information on the value of the product
of the recombination rate ¢ and the effective (diploid)
population size N, but not on ¢ and N separately. It has
therefore become standard to attempt to estimate the
compound parameter p = 4N, and several methods
have been proposed. Some (e.g., GRIFFITHS and MARJO-
RAM 1996; KUHNER ef al. 2000; N1ELSEN 2000; FEARN-

Further, in these kinds of applications, where estimation
of underlying recombination rates may be of only indi-
rect interest, the usefulness of our model will depend

only on whether Pr( /A h,|p) is a sensible distribution
for M, . .., h, for somevalue of the parameters p, even if
this p does not correspond precisely to the background
recombination rate scaled by the effective population
size. Under these circumstances our two approxima-
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Confident Final f Tries
CNVR Call Set

Requirements

1.

. CNVR must be presentin

. Frequency of CNVR >

CNVR must be detected in ! '

at least 2 Assays. e  Gemeres
| CNVR identification added
to CNV calls

- -
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either the HD or GGPF250 :
Assay

0.01% across all samples




Comparisons Across Assays

Chr 15 CNVR Positions
HD (3344)1
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GGPF250 Comparing Breeds Using Jaccard
Similarity Coefficient

13407 11 1 11 3 8 8 8 8 7 7 3 3
HO NDAM NEL PIED RMG BRVH GNS BEFM SHK CHIA

4,873 0.031 0.017 0.028 0.037 0.027 0.005 0.018 0.008 0.003 0.020
945 l 0.082 0.043 0.066 0.054 0.071 0.021 0.046 0.019 0.023 0.052
570 0.064 0.033 0.050 0.074 0.055 0.016 0.036 0.015 0.018 0.042
1,005 0.058 0.030 0.048 0.067 0.051 0.015 0.033 0.014 0.017 0.038
943 0.082 0.043 0.069 0.093 0.070 0.022 0.045 0.020 0.025 0.054
938 1 0.084 0.041 0.067 0.057 0.073 0.020 0.047 0.013 0.024 0.056
857 0.083 0.044 0.079 0.101 0.077 0.015 0.043 0.023 0.028 0.05%
810 1 0.138 0.066 0.0%4 0.157 0.120 0.030 0.078 0.030 0.040  0.082
0.114 0.055 0.077 0.129 0.0%6 0.022 0.064 0.026 0.033 0.070
507 1 0.180 0.073 0.117 0.201 0.157 0.023 0.103 0.034 0051 0.133
503 1 1 0.146 0.083 0.116 0.166 0.134 0.033 0.091 0.033. 0.047 0.100
502 1 1 1 1 ] 0.294 0.101 0.177 0.316 0.272 0.055 0.221 0.058 0.095  0.300
502 1 1 0.413 0.150 0.286 0.445 0.282 0.033 0.251 0.112° 0176 0314
501 1 1 1 1 1 0.383 0.242 0.288 0.406 0.391 0.036 0.316 0131, 0198 0.269
501 1 1 387 0.257 0.247 0.548 0.573 0.031 0.413 0132, 0214 0329
501 1 1 1 1 35 413 0.175 0.219 0.243 0.052 0.281 0.2200 0279 0123
803 1 1 1 45 37 528 0.238 0.257 0.030 0.237 0125 0138  0.203
501 1 1 1 40 41 30 0.528 0.033 0.381 0113, 0191 0.310
501 1 1 1 1 a2 42 0.040 0.433 0.147, 0.233 0.304
501 1 1 1 1 23 35 1 145 0.043 0.061 0.024  0.021
501 ] ] 161 1 283 0175 0248 0.297
501 1 1 1 1 1 1 1 20 207, 0227 0.076
501 1 1 161 1 1 1 1 20 13 218 0.152
301 1 1 1 26 24 24 167
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