2023 Genetic Prediction Workshop

Opportunities and obstacles to enhancing beef cattle evaluation with sequence data

Thank You

Program advisors

 Darrh Bullock
 Cedric Gondro
 Larry Kuehn
 Megan Rolf
 Troy Rowan
 Matt Spangler
 Mark Thallman

Bob Weaber

BIF board & staff
 Angie Denton
 Bob Weaber

 Speakers, panelists, moderators and participants

2023 GPW Format

- Three half-day sessions (same as previous GPW)
 - Technical talks followed by reaction from industry
 Please participate if you have questions, ASK!
- New in 2023
 - Evening poster session
 - Get to know grad students, post-docs & young professionals

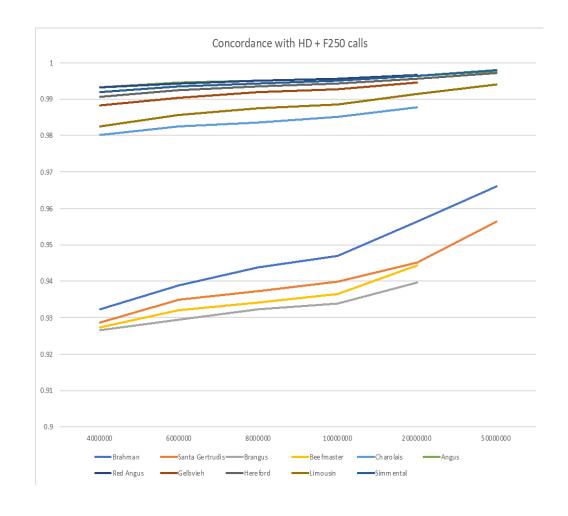
Before low-pass

- Variant discovery sequence influential GPE bulls to detect variation
 - Develop assays to directly genotype interesting variants

Easier said than done

- Custom chips
 - Design and manufacturing is expensive for low volume chips
 - Limited shelf life
- Targeted sequencing
 - Little success
 - Scalability to 1000s of variants?

Before low-pass


- Experimental selection for functional alleles (SFA)
 - Variation in loss-of-function alleles observed in GPE bull sequence
 - ~600 to 900 LOF alleles per bull
 - Could selection against LOF decrease genetic load increase fitness? (Gary Bennett)
 - Selection initiated in MARC I, II and III composites, Angus
 - Populations split into select & control lines using LOF counts from GGP-F250 chip
 - ~200 to 250 LOF per animal
 - Select replacements picked by GGP-F250 LOF counts
 - Control replacements picked randomly

Initial low-pass

- Samples requested to test multiplex library preparation
 - Low-coverage sequencing with samples of GPE cattle, wheat, corn, humans and dogs in same run
 - Potential cost/sample << chip genotypes
 - Mixed results
 - Gencove imputation with ~250 animal panel
 - Concordance up to 99% with chip genotypes
 - Average concordance ~65% sample contamination apparent
 - Success with some samples suggests low-pass worth investigating

Further investigation (USMARC and Gencove)

- Expanded reference to include additional SRA and GPE sequence
 - 946 animal reference
- GPE downsampled deep sequence to mimic low-pass
- Low-pass is a promising alternative to chip genotypes
- Simple, low-cost approach to genotyping specific variants
 - Avoid frustration and expense associated with custom chips or targeted sequencing

Current low-pass

- In-house sequencing and imputation
 - 970 animal reference (added SFA bulls)
 - GLIMPSE imputation
 - 64 million SNP and indels
 - Determine unknown sires by counting exclusions
 - ~5000 high MAF SNP
 - Extract "interesting" variants according to annotation
 - 1.5 million variants in coding sequence, non-coding RNA, UTR
 - Fill low-probability calls with pedigree imputation
 - ~9000 GPE with low pass
 - `27,000 GPE with chip genotypes

Selecting functional alleles with low-pass

- SFA calves sequenced and imputed by Gencove (2020-2021)
- In-house sequencing and imputation (2022-)
- Sires determined by counting exclusions
- Low-probability calls filled by pedigree imputation
 - ~900 to 1350 LOF per animal
 - Mean 34 LOF difference between select and control
 - Larger between-line differences in MARC composites (~40) than Angus (13)

Future work with low-coverage sequencing and imputation

- Reference panel composition & construction algorithms
- Pan-genome aware imputation
 - Major structural variation
- Low-pass by-products
 - Mitochondrial DNA
 - CNV
 - Sex chromosome coverage QC metric?
- Low-coverage long reads

Low-pass challenges

- Storage
 - Plenty of temporary space for computing, not so much to store results
 - Strategies to better utilize available space
- Genotype accessibility
 - Enable collaborators to access genotypes low-pass genotypes would overwhelm existing relational database
 - Queryable system to identify animals available for genotype-specific treatments