

Have your cake and eat it too: Breeding cows for Fertility, Disease Tolerance, and Efficiency

Christine Baes

Full professor & Canada Research Chair in Livestock Genomics Chair of Department of Animal Biosciences, University of Guelph

Adapted from: www.canada.ca/en/environment-climate-change/services/environmental-indicators/greenhouse-gas-emissions

Dairy Cattle Enteric Methane

492 g

CH₄ is produced per day by the average Holstein cow ±30%

Variation exists between cows within a herd 4-7%

Loss in gross energy intake for the animal

Achieving "Dairy Net Zero"

- Canada has endorsed the Global Methane Pledge
- Dairy Farmers of Canada (DFC) targeting net-zero GHG emissions from farm-level sources by 2050
- Many pathways to achieve this significant industry goal
- All possible strategies and tools will need to be used
- One major tool is genetic selection a permanent and cumulative approach

Building Environmental Traits Capacity Over Time

2012

Milk Spectral Data

• Milk MIR pipeline and storage since 2013 90% of milk recorded cows since 2018

2018

Resilient Dairy Genome Project

• Additional international partners 15,000 cows with FE and 4,500 with ME

2022

2023

Dairy_{Zero} Genome Project

• New Genome Canada program *Roadmap for GHG mitigation*

Efficient Dairy Genome Project

• Feed Efficiency & Methane Emission DB 4,500 cows with FE and 1,500 with ME

New regional initiatives

• Lactanet investing in FE and ME collection *CH*₄ sniffers in Canadian commercial farms

Since 2013, multiple projects to genotype cows with medium-high density chips -> over 45,000 cows

Dairy Resiliency Research

An animal able to adapt rapidly to changing conditions, without compromising its productivity, health or fertility, while becoming more resource-efficient, and reducing its environmental burden.

The Resilient Dairy Genome Project

1. 'Closer-to-biology' fertility

- Standardized phenotypes based on automated sensors
- Physiological factors affecting estrous expression and embryo survival
- Genomic markers of estrus expression and fertility
- Other new fertility phenotypes (Audrey Martin, Ella Dodd)

Repro. Biology: Madureira et al., 2022; 2021; Size and Position Score: Martin et al., 2022a & b; CNVs & Fertility: Oliveira et al., 2022; Hormone Use: Lynch et al., 2022; Oliveira et al., 2021

THE UNIVERSITY **OF BRITISH COLUMBIA**

Dr. Ronaldo Cerri

Low

Estrous Expression Madureira et al., 2020. J Dairy Sci. 103:5641-5646

Madureira et al., 2020. J Dairy Sci. 103:5641-5646

High

Madureira et al., 2019, J. Dairy Sci. 102:3598-3608

(n = 1,147 from 657 cows)

8 60

늡 50

per

Pregnancy

40

30

20

10

0

New Fertility Trait, Hot off the Press!

 Shorter Ano-genital distance (AGD) has favorable correlations with positive reproduction outcomes:

- + Pregnancy / insemination
- follicular recruitment
- age at first conception
- Androgenous concentration
- Quick and simple phenotype, now being collected by Holstein Canada

Heritability: 0.39 ± 0.04 Reliability: 0.5 Sires with >10 Daughters: 0.7 Sires with >30 Daughters: 0.83

2. Enhanced disease resistance

- Fertility disorders in routine genomic analyses (Lactanet, 2020)
- Develop methods for routine phenotyping of
 - Calf health (Colin Lynch)
 - Calf feed efficiency (Kyle Hoeksema)
 - Leukosis (Renee Bongers)
 - Crampy (Gabby Condello)

Parameters	First month RMEI	Second month RMEI
Genetic variance	82.28 (41.98)	227.71 (116.77)
Residual variance	171.46 (22.80)	487.02 (64.42)
Heritability of Metabolizable Energy Intake in Calves	0.32 (0.14)	0.32 (0.13)

JNIVERSITY

Lynch et al, 2024, Hoeksema et al., sub., Bongers et al., in prep., Condello et al., in prep

3. Feed efficiency and methane emissions

JNIVERSITY

ダGUELPH

Enlarging the reference population for

- **Feed efficiency** (*n*=17,000)
- Methane emissions (n=7,800)

Many challenges, but even more opportunities

Rumination Time (Lucas Lopes)

4. Genomic and environmental relationships

Genetic parameters and prediction of EBVs of resilience traits

- Multi-trait GWAS and meta-analysis to identify genomic regions with pleiotropic effects on resilience traits
- Genomic predictions for resilience indicator traits using copy number variants
- Investigate the effects of heat stress on important traits

Dr. Flavio Schenkel

Figure 1. Number of test-day (TD) records per temperature-humidity index (THI) calculated using maximum temperature and minimum relative humidity by parity, in Ontario (a) and Quebec (b).

Campos et al., 2022

5. Multi-generational effects and epigenetics

- Quantify effect of early environment (i.e., cow's production) on resilience of daughters
- Survey for epigenetic signature on precisely phenotyped animals

Preliminary Results:

- 1.3 kg Energy-Corrected Milk gain per daughter lactation for every 1 day increase in dam Days In Milk at conception (Cue et al., 2022)
- 48 animals with Whole Genome Bisulfite Sequence:
 - 24 healthy
 - 24 with mastitis, poor performance, infertility, or lameness

AVAI

6. Data management

6. Data Management

Management of project database

- Whole-genome sequence data analysis for variants, genotypes, functional annotations
- Genome browser integration of GWAS findings, epigenetic signatures, & annotated sequence variation

UNIVERSITY OF

7. GE3Ls: sustainability and social acceptance

Y UNIVERSITY OF ALBERTA

7. GE³LS: Optimizing traits to maximize sustainability and societal acceptance

Dr. Getu Hailu

Dr. Ellen Goddard

- Farm level decisions about trade-offs between traits
- Farm/Market level outcomes from selection of resilience traits
- Public acceptance of dairy under different breeding strategies

If selective breeding could be used to solve the environmental impacts of the dairy industry in Canada, do you think that you would be happy?

8. Translation and Implementation

Implementation of evaluations:

- Fertility Disorders (2020)
- Feed Efficiency (2021)
- Methane Efficiency (2023)
- Body Maintenance Req. (2023)

Develop resiliency index \rightarrow integrated into modernized LPI/Pro\$

Dr. Filippo Dr. Gerrit Miglior Kistemaker

Data Source (Activity)	Trait	Stage of Implementation	
1.3	Estrous Activity	Study	
1.3	Estrous Intensity	Study	
1.3	Estrous Interval	Study	
1.3	Size and Position Score	Study	
1.3	Ano-Genital distance	Study	
2.1	Retained Placenta	Implemented	
2.1	Metritis	Implemented	
2.1	Cystic Ovaries	Implemented	
2.2	Johne's Disease	Study	
2.2	Leukosis	Under review	
2.3	Calf Respiratory Disease	Under development	
2.3	Calf Diarrhea	Under development	
2.3	Metabolizable Energy Intake (Calves)	Study	
3.1	Dry Matter Intake	Implemented	
3.2	Methane Emissions	Implemented	
3.2	Body Maintenance Requirements	Implemented	

Scientific Deliverables

- 27 peer-reviewed publications
- 75 invited presentations
- 155 seminars, conference presentations, abstracts and posters
- 73 undergraduate students
- 8 MSc Theses completed
 - 1 in progress
- 5 PhD Theses completed
 - 4 in progress
- 9 postdoctoral researchers
- 2 research technicians
- 2.25 project managers •
- 44 TV, radio and media contributions

Economic Deliverables

Population size: 0.9 M Lag time* for Benefits: 3.33 yrs 10-Year Horizon	Genetic progress (Pro\$)	Benefit per cow per year (\$)	Cumulative benefits per year of selection (\$M)	
Before Genomics				
(2004-2009)	104	54	302	
Introduction of Genomics				
(2010-2015)	204	106	593	
Adoption of Genomics				
(2016-Today)	248	129	721	
Addition of GHG Mitigation	283	148	823	

*number of years between the selection investment and the first year of benefits

From research to implementation: Genomic Selection for Methane

Predicting Methane

- 241 MIR spectral datapoints used as input predictors
- Collected average daily methane from 496 cows from two herds between 5-305 DIM

Prediction accuracy of 0.70

Genetic Correlation 0.92 (0.22)

Apply prediction to MIR population

- Over **19M** records collected since 2018
- Milk MIR data on 90% of milk recorded cows since 2018

Average Predicted and Collected Methane Production by GEBV class

Predicted CH4

CH4 (g/d)

Summary of Data (Wallace et al., 2019)

CH ₄ Measurement Method	No. Cows (Herds)	Country	Breed	No. Genotyped Cows
Chambers	100 (1)	FI	Nordic Red	100
Green Feed	405 <mark>(</mark> 3)	П	Hoistein	398
	100 (1)	SE	Nordic Red	99
Sniffers in robots	407 (2)	UK	Holstein	398

External Validation

Recorded CH₄ by RBV class (lactation=1; 120-185 DIM)

Data Used for National Genetic Evaluation

- First lactation Holsteins from 6,128 herds
- Between 120 and 185 DIM

*Numbers for April 2023 evaluations

Methane Efficiency is a New Trait

Pro\$ LPI **Production** Durability Health & Fertility Milk Yield **Fat Yield Protein Yield Fat Deviation Protein Deviation Mastitis Resistance Feed Efficiency Daughter Fertility Metabolic Disease Resistance**

-0.3

• Methane Efficiency does not have a significant unfavorable correlation with any other evaluated trait

- Selection for Feed Efficiency does not also improve Methane Efficiency
 - Both traits are independent of production yields

Interpretation

Reduce CH₄ production by selecting for higher Methane Efficiency without impacting production traits

5-point ↑ in a sire's RBV for ME, daughters are expected to produce 3kg less CH₄ per year

1.5% decrease in CH₄ emissions per cow per year

Herd owners selecting for ME can achieve 20-30% reduction in CH₄ emissions from their herd by 2050

Home / Archives / No. 59 (2023): Proceedings of the 2023 Interbull Meeting / Articles

Implementation of Methane Efficiency Evaluations for Canadian Holsteins

in Van Doormaal adian Dairy Network (CDN)	🔁 pdf
ayah Rojas de Oliveira	
anya Narayana anet Canada	Published 2023-12-13
son Fleming anet Canada	Issue
inah Sweett anet Canada	No. 59 (2023): Proceedings of the 2023 Interbull Meeting
ncesca Malchiodi ex Alliance	Section
usz Jamrozik anet Canada	Articles
rit Kistemaker anet Canada	License
er Sullivan anet Canada	Authors who publish with this journal agree to the following terms:
opo Miglior anet Canada & University of Gueloh	-greete the control of the second

Lactanet Genetic Toolbox

Feed Efficiency April 2021

Body Maintenance Requirements April 2023 Methane Efficiency April 2023

Reduce feed costs

Reduce methane emissions

Future Strategy: More projects!

The current MIR prediction is for 1st parity Holsteins, 120-185 DIM

Our Goals:

- Enhance milk MIR prediction
 - Increase # CH₄ records with GreenFeed
 - Install CH₄ sniffers (MooLogger) in up to 65 robotic farms across Canada
 - Including Jersey and Ayrshire, in addition to Holstein
 - Multiple parities
 - ✓ Full lactation
 - Different feeding and management systems
- Enhanced genomic evaluation
 - Using new milk MIR prediction
 - Using new milk MIR prediction + collected CH₄ from GreenFeed and sniffers

Christine Baes Professor and Canada Research Chair, University of Guelph

Professor, Université Laval

Fawn Jackson Chief Sustainability Officer, Dairy Farmers of Canada

Ermias Kebreab Professor and Associate Dean, Senior Advisor, Lactanet University of California Davis

Filippo Miglior Canada

Michael von Massow Professor, University of Guelph

Jennifer Ellis Professor University of Guelph

Doug MacDonald Section Head, **Environment and** Climate Change Canada

Francesca Malchiodi **Director**, Genetics & Analytics Semex

Caeli Richardson Plant and Animal Geneticist AbacusBio

Debora Santschi Director, Innovation, Lactanet Canada

Flavio Schenkel Professor University of Guelph

Paul Stothard Professor, University of Alberta

Climate-Smart Agriculture and Food Systems – ICT 2022 Leveraging Genomics to Achieve Dairy Net Zero

GOALS

- Consolidation of existing methane emissions data (including beef)
- Estimate animal and herd-level emissions
- Quantify potential GHG reductions through genetic and nutrition strategies
- Enhance CH₄ genomic evaluations
- Understand public attitudes/behaviours to emissions reductions
- Develop and implement CH₄ herd monitoring and benchmarking tools
- Develop a roadmap for CH₄ mitigation

A Fully Integrated Partnership

Final Remarks

- National, international, interdisciplinary and multidisciplinary collaborations very important
- Dairy cattle resiliency is a top priority, but requires a lot of high quality phenotypes
 - Fertility, Health, Efficiency
- Deliverables of research shape the future of the industry
- Potential application of dairy results for beef?
- Teamwork makes the dream work more cake for everyone!

Acknowledgements

Thanks to a fantastic team!

www.resilientdairy.ca/

