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What is metagenomics?

Definitions:
• Microbiome – a community of microbes

• Metagenome – the cumulative genomes of cells which make up 
   the microbiome

• Metagenomics – is the study of the genomes of that microbial 
   population



Why do we care about metagenomics?



Why do we care about metagenomics?
It influences so many things! 

Figure: Ross & Hayes, Front Genet, 2022
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Why do we care about metagenomics?

• Rumen metagenome: (summarized in Mizrahi and Jami, 2018)

• Feed efficiency and RFI
• Enteric methane emissions
• Milk fat and yield 

• Human gut metagenome: (summarized in Kho and Lal, 2018)

• IBD
• Celiac disease
• Obesity
• Infectious disease

• Saliva metagenome: (Alqedari et al, 2024)

• Covid-19 severity



Why do we care about metagenomics?

• Microbiability (m2) – proportion of phenotypic variance of the trait 
that is explained by between-animal differences in the microbial 
community
• Difford,  Lassen & Løvendahl, 2016

• Cattle CH4 – 0.15 (Difford et al., 2018)

• Swine feed conversion ratio – 0.20 (Aliakbari et al., 2022)

• Swine back fat – 0.40 (He et al. 2022)

• Lamb live weight – 0.33 (Hess et al., 2023)



Why do we care about metagenomics?

• There is some component of host control of the microbiome that 
is independent of diet/environment 



• Martínez-Álvaro, et al. Commun Biol, 2022

• 17% of rumen microbial genera had significant host genomic 
effects (h2 = 0.13-0.61)

• 29 microbial genera host-genomically correlated with methane 
emissions (r = 0.59-0.93)

Bovine host genome acts on rumen microbiome 
function linked to methane emissions



• Martínez-Álvaro, et al. Commun Biol, 2022

Highlights the strength of a common 
host genomic control of specific 

microbial processes and CH4

Bovine host genome acts on rumen microbiome 
function linked to methane emissions



Bovine host genome acts on rumen microbiome 
function linked to methane emissions
• Selection based on:

• 30 most informative microbial genes- mitigation potential of 17%
• CH4 phenotype using respiration chambers – 13% mitigation potential

The host genome affects the comprehensive function of the microbiome in 
the cattle rumen

Martínez-Álvaro, et al. Commun Biol, 2022



Hypotheses

As the microbiome 
contributes a significant 

proportion of the variance of 
many traits, we may be able 

to use metagenomics to 
capture additional variance

Due to host-microbiome 
interactions, we may be able 
to positively select for more 

desirable microbiomes



The opportunity of 
metagenomics
• Metagenomic prediction
• Two types: 

• Phenotypic prediction 
• Proxy trait to predict genetic merit

• Can be used in tandem with 
genotypes to inform prediction

Figure: Ross & Hayes, Front Genet, 2022



Metagenomic prediction

• First report of using BLUP for 
    prediction, fitting metagenomic
    profiles from shotgun sequencing
• 2013

• Inspired by genomic BLUP, fitting a GRM
• Inspired by rapidly decreasing sequencing costs
• Inspired by difficulty measuring methane phenotypes and need for a proxy

• Prediction accuracy for methane = 0.466
• max n = 47 cattle 



Holobiont prediction

Martinez Boggio et al., JDS, 2024



Holobiont prediction

Martinez Boggio et al., JDS, 2024
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Holobiont prediction

• The differences obtained 
between the h2 and the hd

2 
strongly suggest that the 
microbiome mediates part of 
the host genetic effect



Metagenomic prediction

• Swine:
• Prediction accuracy significantly increased by 

including microbiome data – more than 100% 
increase for back fat

• Bunnies:
• Accurately sorted high vs low lifetime productivity 

females with 94% accuracy using just 53 
amplicon seq variants 

• Sheep:
• Combining the metagenome profile with host 

genotype explained more than 70% of the 
variation in methane emissions and residual feed 
intake.

• Increased prediction accuracy for growth and 
fleece weight



Metagenomic prediction

Steps: 
1. Sample and phenotype collection
2. Sequencing the metagenome
3. Classification
4. Quantitative analysis

a. Relationship matrix
b. Prediction modeling 

Figure: Ross & Hayes, Front Genet, 2022



1. Sample and phenotype collection
• Consider trait of interest and how that 

relates to the microbial community 
being sampled
• Rumen, fecal, oral
• Could be anything!

Metagenomic prediction

Photo credit: E. Ross, personal comm.



Metagenomic prediction

2. Sequencing the metagenome

Amplicon sequencing (16S, 18S, etc.)
• Pro: Most cost effective option
• Cons: Lower resolution, more difficult to characterize function or abundance

Short read sequencing
• Pro: Less biased approach
• Con: Single reads don’t span entire genes

Long read sequencing
• Pro: Best taxonomic classification, highest alignment rate
• Con: More expensive

Figure: Lee, J Open Source Edu, 2019



Metagenomic prediction

2. Sequencing the metagenome
• Sequencing depth example:

• Short read: 3 million reads                    
(Ross et al., 2012)

• Long read: 1.5 million reads per sample 
(E. Ross, personal comm., 2024)



Metagenomic prediction

3. Classification – taxonomical or functional
• Taxonomical – which species are present? 

• Direct alignment – assigns taxonomy using either public or 
assembled reference dataset

• Reference free approaches – based on sequence similarity

Figure: modified Zhang et al, 2016



Metagenomic prediction

3. Classification – taxonomical or functional
• Taxonomical – which species are present? 

• Genus or species
• OTUs – Operational Taxonomic Units

• Clusters sequence based on percent similarity - challenges 
with between study comparisons

• ASVs – Amplicon Sequence Variants
• Distinguishes single nucleotides – reproducible across 

studies

Figure: modified Zhang et al, 2016



3. Classification – taxonomical or functional
• Functional – what do the species do?

• Gene content – direct alignment to reference 
dataset

• Can be further classified using functional 
annotation 

Metagenomic prediction

Figure: modified Zhang et al, 2016



Metagenomic prediction

Figure: Ross & Hayes, Front Genet, 2022



Metagenomic prediction

4. Quantitative Analysis
a. Metagenomic relational matrices (MRM)

• 𝑀 =
𝑋𝑋′

𝑛
   (Ross et al., 2013; Difford et al., 2018; Saborio-Montero et al., 2021; Boggio et al., 2023)

• X is the matrix of natural log transformed bacterial and archaeal 
relative abundance 

Alternative:
• Heritabilities of the microbiome were estimated by fitting the 3361 

[microbes] as observed traits in 3361 univariate genomic models. 
(Martínez-Álvaro, et al., 2024)

***Nearly any approach requires a normalization or scaling step



Metagenomic prediction

4. Quantitative Analysis
b. Prediction modeling 
• Phenotype vs proxy trait breeding value
• Linear, Bayesian, machine learning

• BLUP – Ross et al., 2013
• BayesR-like – Zhang et al, ISME, 2018
• Machine learning – Maltecca et al, Sci Rep, 2019

• Fitting both the GRM and MRM simultaneously
• Separate variance estimates
• Microbiability and heritability 



Feasibility of metagenomic predictions

• Value proposition of metagenomics:
• Capturing trait variance for low-moderate heritability traits
• Especially, difficult to measure traits

• Cost of:
• Long read metagenomic sequence: $100 / sample
• Feed efficiency trial: $750 / head
• Year of missed cow production due to infertility: $900 (Prevatt et al, 2018)

• BRD prevention, management, treatment, herd losses = $1 billion per 
year to industry (TAMU)



Feasibility of metagenomic predictions

Facilitating genetic selection for reduced enteric methane in 
northern Australia

• Simulated Case Study – E. Ross, unpublished

Assumptions:
1. Large effective population size: N = 1000
2. Heritability of methane: h2 = 0.17 (Gonzalas-Recio et al., 2022)

3. Genetic correlation between CH4:CO2 ratio and microbiome predicted 
methane = 0.66 (Bilton et al., 2022)

4. Cost of metagenomic sequenced sample: $160 AUD
5. Cost of GreenFeed phenotype: $2750 AUD



Feasibility of metagenomic predictions

• The expected prediction accuracy was calculated using the equation 
from Daetwyler et al (2008):  

𝑟 =
𝑁ℎ2

𝑁ℎ2 +𝑀𝑒

• Scaled by genetic corr. between direct and microbiome predicted 
methane

• Scenario: All animals have a metagenomic profile, 5% have 
GreenFeed phenotype



Feasibility of metagenomic predictions

• Scenario: All animals have a metagenomic profile, 5% have 
GreenFeed phenotype

Angus Droughtmaster Brahman Crossbred



Future perspective: Improving disease resistance

• Nasal microbiomeBRD resistance

• Nasal or ocular microbiomePink eye resistance

• Vaginal and seminal microbiomeVenereal disease 
resistance



Future perspective: Improved reproduction

• Vaginal and seminal microbiomeImproved 
conception rate 

• Vaginal and seminal microbiomeReduced early 
embryonic loss

• Follicular fluid and seminal 
microbiomeIVF success rate



Challenges

• Required reference population sizes
• Still a quantitative trait of low-moderate heritability
• Still need large groups of animals with metagenomic profiles to be useful

• p > n – many datasets currently have more metagenomic classifications 
 than there are sequenced animals



Challenges

• Data interpretation
• Effect direction of metagenomic predictions is not necessarily known

• Is the microbiome affecting the phenotype, or is the phenotype affecting the 
microbiome?

• Enteric methane (microbiome effects phenotype) 
• Autism in humans (phenotype effects microbiome)

• Timing of sampling and reporting of metadata to compare studies
• Ex: reference free approaches, especially OTUs, are difficult to compare
• Population and environmental differences
• Dietary and developmental differences



Ongoing research questions

• Underlying biology 
• Optimized modeling approaches 
• Estimation of metagenomic relationships
• Optimized sequencing requirements
• Classification approaches
• Sufficient reference datasets for alignment
• Host-metagenome interactions
• Proof-of-concept for selection using metagenomic informed 

predictions



Summary

• The microbiome has potentially large effects on expression of 
traits of interest

• Between animal variation can be profiled using metagenomics

• Metagenomic prediction is an opportunity to increase prediction 
accuracy or use the metagenome as a proxy trait

• There is ample room for improvement – opportunities!
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Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA a nd does not imply approval to the exclusion 
of other products that may be suitable.  USDA is an equal opportunity provider and employer.

Questions?

Contact:
Bailey Engle     402-762-4264      bailey.engle@usda.gov
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