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Outline

* What is metagenomics & why do
we care?

* The opportunity of metagenomics
& metagenomic prediction

* Future perspectives

* Challenges & ongoing research
questions




What is metagenomics?

Definitions:

* Microbiome —a community of microbes et

» Metagenome - the cumulative genomes of cells which make up
the microbiome

« Metagenomics - is the study of the genomes of that microbial
population
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Why do we care about metagenomics?

It influences so many things!

Influenced by:

Host genet
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Environment

Figure: Ross & Hayes, Front Genet, 2022

Directly related:

Enteric methane

Digestion and feed
efficiency

Indirectly related:
Immune response
S—

Neurological
function




Why do we care about metagenomics?

e Rumen metagenome: (summarized in Mizrahi and Jami, 2018)
* Feed efficiency and RFl

e Enteric methane emissions
* Milk fat and yield

* Human gut metagenome: (summarized in Kho and Lal, 2018)
* IBD

e Celiac disease
* Obesity
* Infectious disease

* Saliva metagenome: (Algedarietal, 2024)
* Covid-19 severity




Why do we care about metagenomics?

» Microbiability (m?) — proportion of phenotypic variance of the trait
that is explained by between-animal differences in the microbial

community
* Difford, Lassen & Lgvendahl, 2016

* Cattle CH, - 0.15 (Difford etal., 2018)

e Swine feed conversion ratio — 0.20 (Aliakbari et al., 2022)
e Swine back fat—0.40 (He et al. 2022)

* Lamb live weight — 0.33 (Hess etal., 2023)




Why do we care about metagenomics?

* There is some component of host control of the microbiome that
IS iIndependent of diet/environment

A heritable subset of the core rumen microbiome dic-
tates dairy cow productivity and emissions

R. JOHN WAL LACE , GOOR SASSON, PHILIP C. GARNSWORTHY , ILMA TAPIO , EMMA GREGSON, PAQLO BANI , PEKKA HUHTANEN JALL R BAYAT )

FRANCESCO STROZZ, [...], AND ITZHAK MIZRAH +23 authors = Authors Info & Affiliations

SCIENCE ADVANCES - 3.Jul 2019 - Vol 5,Issue7 - DOI:10.1126/sciadv.aav8391




Bovine host genome acts on rumen microbiome
function linked to methane emissions

« Martinez-Alvaro, et al. Commun Biol, 2022

* 17% of rumen microbial genera had significant host genomic
effects (h?=0.13-0.61)

* 29 microbial genera host-genomically correlated with methane
emissions (r =0.59-0.93)




Bovine host genome acts on rumen microbiome
function linked to methane emissions

 Martinez-Alvaro, et al. Commun Biol, 2022 <A ..
Highlights the strength of a common :
host genomic control of specific

microbial processes and CH,



Bovine host genome acts on rumen microbiome
function linked to methane emissions

* Selection based on:
* 30 mostinformative microbial genes- mitigation potential of 17%
* CH, phenotype using respiration chambers — 13% mitigation potential
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The host genome affects the comprehensive function of the microbiome in
the cattle rumen

Martinez-Alvaro, et al. Commun Biol, 2022




Hypotheses

As the microbiome
contributes a significant
proportion of the variance of
many traits, we may be able
to use metagenomics to
capture additional variance

J

Due to host-microbiome
interactions, we may be able
to positively select for more
desirable microbiomes




y=Xb+Zu+e
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The opportunity of
metagenomics

* Metagenomic prediction

* Two types:
* Phenotypic prediction
* Proxy trait to predict genetic merit

* Can be used in tandem with
genotypes to inform prediction

Figure: Ross & Hayes, Front Genet, 2022



Metagenomic prediction

OPEN a ACCESS Freely available online @PLOS | ONE
* First report of using BLUP for Metagenomic Predictions: From Microbiome to Complex

o . , Health and Environmental Phenotypes in Humans and
prediction, fitting metagenomic  cattle

p I’Ofl leS fI’O m Sh Otgu N Seq ue nCi ng Elizabeth M. Ross"?3*, Peter J. Moate®, Leah C. Marett®, Ben G. Cocks'*>, Ben J. Hayes"?*?

1 Biosciences Research Division, Department of Environment and Primary Industries, Bundoora, Victoria, Australia, 2 Dairy Futures Cooperative Research Centre, Bundoora,
20 1 3 Victoria, Australia, 3 La Trobe University, Bundoora, Victoria, Australia, 4 Future Farming Systems Division, Department of Environment and Primary Industries, Ellinbank,
Victoria, Australia

* Inspired by genomic BLUP, fitting a GRM
* Inspired by rapidly decreasing sequencing costs
* |nspired by difficulty measuring methane phenotypes and need for a proxy

Cited by 144

* Prediction accuracy for methane =0.466
* maxn =47 cattle lllllllll

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024




Holobiont prediction
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Martinez Boggio et al., JDS, 2024




Holobiont prediction
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CORR

Holobiont prediction

RFI
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* The differences obtained
between the h? and the h?
strongly suggest that the
microbiome mediates part of
the host genetic effect




Metagenomic prediction

* Swine:
* Prediction accuracy significantly increased by
including microbiome data — more than 100%
increase for back fat

* Bunnies:
* Accurately sorted high vs low lifetime productivity

females with 94% accuracy using just 53
amplicon seq variants

* Sheep:
* Combining the metagenome profile with host

genotype explained more than 70% of the
variation in methane emissions and residual feed

intake.

* Increased prediction accuracy for growth and
fleece weight

SCIENTIFIC REP{{}}RTS

Traits in Swine Using Microbiome
Data and Machine Learning
hepet 1At 201 Algorithms

Published online: 25 April 2019 5l% . o
ublished oulimes 25 Apr Christian Maltecca®, Duc Lu!, Constantino Schillebeeckx?, Nathan P. McNulty (5?2,
1 i1

Clint Schwab?, Caleb Shull® & Francesco Tiezzi

Biada et al. Genetics Selection Evolution (2024) 56:25 Genetics Selection Evolution

https://doi.org/10.1186/512711-024-00895-6

Microbiome composition as a potential
predictor of longevity in rabbits

Iliyass Biada', Noelia Ibanez-Escriche"®, Agustin Blasco', Cristina Casto-Rebollo' and Maria A. Santacreu’'

Hess et al. Genetics Selection Evolution ~ (2023) 55:53 Genetics Selection Evolution

https://doi.org/10.1186/s12711-023-00822-1

Combining host and rumen metagenome e
profiling for selection in sheep: prediction

of methane, feed efficiency, production,

and health traits

Melanie K. Hess"*'®, Larissa Zetouni'?, Andrew S. Hess'#, Juliana Budel'”, Ken G. Dodds', Hannah M. Henryw,
Rudiger Brauning', Alan F. McCulloch', Sharon M. Hickey®, Patricia L. Johnson', Sara Elmes’, Janine Wing®,
Brooke Bryson®, Kevin Knowler', Dianne Hyndman', Hayley Baird', Kathryn M. McRae!, Arjan Jonker'®,

Peter H. Janssen'®, John C. McEwan' and Suzanne J. Rowe'



Metagenomic prediction .

Steps:
1. Sample and phenotype collection
2. Sequencing the metagenome

y=Xb+Zu+e

3. Classification o (% 2,

4. Quantitative analysis
a. Relationship matrix
b. Prediction modeling

Validation population

Figure: Ross & Hayes, Front Genet, 2022




Metagenomic prediction

1. Sample and phenotype collection

* Consider trait of interest and how that
relates to the microbial community
being sampled

* Rumen, fecal, oral
* Could be anything!

Photo credit: E. Ross, personal comm.




Amplicon sequencing

Metagenomic prediction

Mixed microbial community } — e

Multiple copies of fragments
O from 1 target gene

2. Sequencing the metagenome %E —
‘Y\ Ext?glc%on Metagenomics sequencing
Amplicon sequencing (16S, 18S, etc.) O \ OOO
* Pro: Most cost effective option ——

 Cons: Lower resolution, more difficult to characterize function or abundance Short sequence

fragments from "all" DNA

Short read sequencing

* Pro: Less biased approach
* Con: Single reads don’t span entire genes

Long read sequencing
* Pro: Best taxonomic classification, highest alignment rate
* Con: More expensive

Figure: Lee, J Open Source Edu, 2019




Metagenomic prediction

2. Sequencing the metagenome

6000
|

» Sequencing depth example:

e Shortread: 3 million reads
(Ross et al., 2012)

4000
|

Species

2000
|

* Longread: 1.5 million reads per sample
(E. Ross, personal comm., 2024)




Metagenomic prediction

3. Classification —taxonomical or functional

* Taxonomical - which species are present?

* Direct alignment — assigns taxonomy using either public or
assembled reference dataset

* Reference free approaches — based on sequence similarity

Taxonomy tree
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Figure: modified Zhang et al, 2016




Metagenomic prediction

3. Classification —taxonomical or functional

* Taxonomical - which species are present?
* Genus or species
* OTUs - Operational Taxonomic Units

* Clusters sequence based on percent similarity - challenges
with between study comparisons

 ASVs - Amplicon Sequence Variants

* Distinguishes single nucleotides —reproducible across
studies

Figure: modified Zhang et al, 2016




Metagenomic prediction

3. Classification —taxonomical or functional
* Functional - what do the species do?
* Gene content — direct alignment to reference

dataset
* Can be further classified using functional
annotation :
Gene catalogue
ATGTTAGCTAT ..........AAAATAG
ATGTTAGAT........... CAATTATAA
ATGGGETGC.. ........ ATCGTATAG

Sequence assembly

Start codon
{ATG)

|

—p Gene prediction

TTCG|ATGGAT.......... HGGTAG \AA

Stop codon
(TAG)

Gene funclion databasea

KEGG
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function

Figure: modified Zhang et al, 2016




Metagenomic prediction

Taxal Taxa 2 Taxa 3 Taxa 4 Taxa s Taxa 6 Taxa7 Taxa 8 Taxa 9 Taxal0 |[Taxall |(Taxal2

Animal 1 690 216 670 490

Animal 2 2475 786 1555 1124) 2967 555 1541 443 1174 2638
Animal 3 993 489 455 176 2506 1720 566 723 242 633] 2583
Animal 4 343 455 467 267 1196 307 219 278
Animal 5 762 1014 732 2145 1449 704 794 253 1618 1472
Animal 6 377 372 233 707 182 331 331
Animal 7 855 1326 1403 2620 460 1741 764 355 2224

Animal 8 559 1506 1961 2219 944 355 304 231 2121 2117
Animal 9 220 352 375 646 578 268 395

Animal 10 1762 1316 329 843 261 1466 341 1759 364 478 1042
Animal 11 327 252 350 398 523

Animal 12 2600 1623 369 1726 699 313 997 1042 398 1162 743
Animal 13 1835 817 1828 1294 2528 1813 2216 831 290 2169 914
Animal 14 406 618 485 195 271

Animal 15 2057 860 619 1321 2228 1147 477 1198 407 252 1443 1546
Animal 16 206 563 636 239 406 1304 375 884 1288
Animal 17- 1552 1385 944 278 1536 266 2222| 536 313 1509 809

Figure: Ross & Hayes, Front Genet, 2022



Metagenomic prediction

4. Quantitative Analysis

a. Metagenomic relational matrices (MRM)
xx'

¢ M — T (Ross et al., 2013; Difford et al., 2018; Saborio-Montero et al., 2021; Boggio et al., 2023)

 Xisthe matrix of natural log transformed bacterial and archaeal
relative abundance

Alternative:

 Heritabilities of the microbiome were estimated by fitting the 3361

[microbes] as observed traits in 3361 univariate genomic models.
(Martinez-Alvaro, et al., 2024)

***Nearly any approach requires a normalization or scaling step




Metagenomic prediction

4. Quantitative Analysis
b. Prediction modeling
* Phenotype vs proxy trait breeding value
* Linear, Bayesian, machine learning
e BLUP - Rossetal., 2013
 BayesR-like - Zhang et al, ISME, 2018
* Machine learning — Maltecca et al, Sci Rep, 2019

* Fitting both the GRM and MRM simultaneously
* Separate variance estimates
* Microbiability and heritability




Feasibility of metagenomic predictions

* Value proposition of metagenomics:
e Capturing trait variance for low-moderate heritability traits
* Especially, difficult to measure traits

* Cost of:
* Long read metagenomic sequence: $100/ sample
* Feed efficiency trial: $750 / head
* Year of missed cow production due to infertility: $900 (Prevatt et al, 2018)

* BRD prevention, management, treatment, herd losses = $1 billion per
year to industry (TAMU)




Feasibility of metagenomic predictions

Facilitating genetic selection for reduced enteric methane in

northern Australia
* Simulated Case Study - E. Ross, unpublished

Assumptions:

1.
2.
3.

Large effective population size: N =1000
Heritability of methane: h? = 0.17 (Gonzalas-Recio et al., 2022)

Genetic correlation between CH,:CO, ratio and microbiome predicted
methane = 0.66 (Bilton et al., 2022)

Cost of metagenomic sequenced sample: $160 AUD
Cost of GreenFeed phenotype: $2750 AUD




Feasibility of metagenomic predictions

* The expected prediction accuracy was calculated using the equation
from Daetwyler et al (2008):

Nh?
[ ] ’r' —
Nh? + M,

* Scaled by genetic corr. between direct and microbiome predicted
methane

* Scenario: All animals have a metagenomic profile, 5% have
GreenFeed phenotype




Feasibility of metagenomic predictions

* Scenario: All animals have a metagenomic profile, 5% have
GreenFeed phenotype

0.754
Phenotyping
method
0.50 1 Fey, , =) Combination
v > (=2}
! ® | — Greenfeeds
v I Microbiome Only
0254 4+ -
v S e TSE SRS BT A P
- D lh;— Ptk
0.00, 1

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Million dollars




Future perspective: Improving disease resistance

BRD resistance e Nasal microbiome

HBTCYERGEE R Elld=0 ° Nasal or ocular microbiome

Venereal disease

: e VVaginal and seminal microbiome
resistance




Future perspective: Improved reproduction

Improved
conception rate

e Vaginal and seminal microbiome

Reduced early

: e \Vaginal and seminal microbiome
embryonic loss

e Follicular fluid and seminal

IVF success rate : .
microbiome




Challenges

* Required reference population sizes
 Still a quantitative trait of low-moderate heritability
» Still need large groups of animals with metagenomic profiles to be useful

* p >n—-many datasets currently have more metagenomic classifications
than there are sequenced animals




Challenges

* Data interpretation

* Effect direction of metagenomic predictions is not necessarily known

* |s the microbiome affecting the phenotype, or is the phenotype affecting the
microbiome?

* Enteric methane (microbiome effects phenotype)
* Autismin humans (phenotype effects microbiome)

* Timing of sampling and reporting of metadata to compare studies
* Ex: reference free approaches, especially OTUs, are difficult to compare
* Population and environmental differences
* Dietary and developmental differences




Ongoing research questions

* Underlying biology

* Optimized modeling approaches

* Estimation of metagenomic relationships

* Optimized sequencing requirements

* Classification approaches

* Sufficient reference datasets for alignment

Host-metagenome interactions
Proof-of-concept for selection using metagenomic informed

oredictions



Summary

* The microbiome has potentially large effects on expression of
traits of interest

* Between animal variation can be profiled using metagenomics

* Metagenomic prediction is an opportunity to increase prediction
accuracy or use the metagenome as a proxy trait

* There is ample room for improvement — opportunities!
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Questions?

" Contact:
Bailey Engle 402-762-4264 Dbailey.engle@usda.gov

Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion
of other products that may be suitable. USDA is an equal opportunity provider and employer.

USDA Agricultural Research Service

SSSM U-S. DEPARTMENT OF AGRICULTURE
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