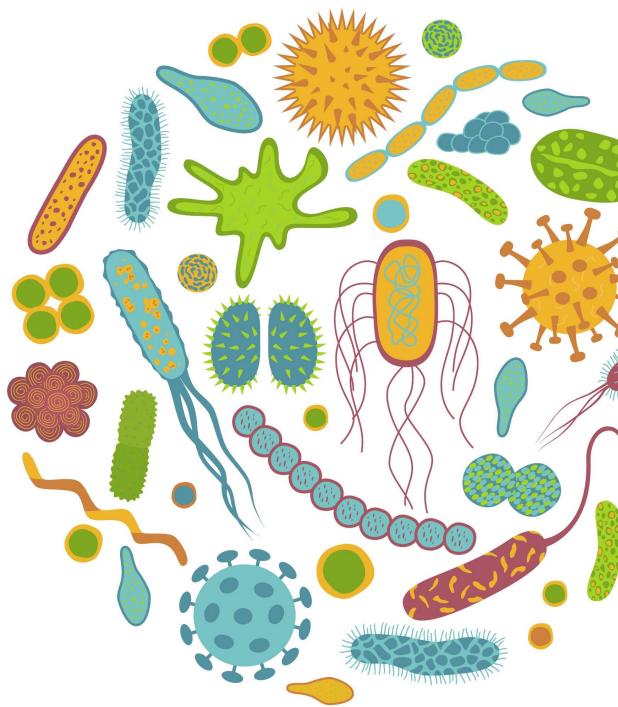
Metagenomics: a new opportunity for livestock improvement

Bailey Engle – US Meat Animal Research Center

Beef Improvement Federation Annual Meeting June 11, 2024

Outline

- What is metagenomics & why do we care?
- The opportunity of metagenomics & metagenomic prediction
- Future perspectives
- Challenges & ongoing research questions



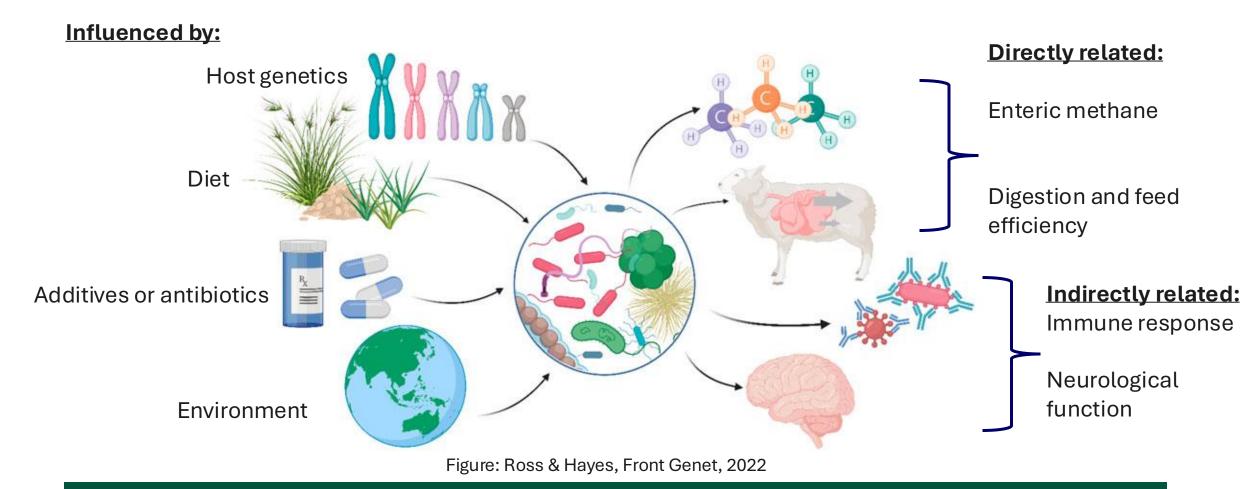
What is metagenomics?

Definitions:

- *Microbiome* a community of microbes
- *Metagenome* the cumulative genomes of cells which make up the microbiome
- *Metagenomics* is the study of the genomes of that microbial population

GENOME A gene catalogue of the human gut microbiome

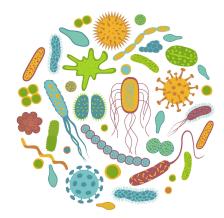
It influences so many things!



- Rumen metagenome: (summarized in Mizrahi and Jami, 2018)
 - Feed efficiency and RFI
 - Enteric methane emissions
 - Milk fat and yield
- Human gut metagenome: (summarized in Kho and Lal, 2018)
 - IBD
 - Celiac disease
 - Obesity
 - Infectious disease
- Saliva metagenome: (Alqedari et al, 2024)
 - Covid-19 severity

- Microbiability (m²) proportion of phenotypic variance of the trait that is explained by between-animal differences in the microbial community
 - Difford, Lassen & Løvendahl, 2016

- Cattle CH₄ 0.15 (Difford et al., 2018)
- Swine feed conversion ratio 0.20 (Aliakbari et al., 2022)
- Swine back fat 0.40 (He et al. 2022)
- Lamb live weight 0.33 (Hess et al., 2023)



 There is some component of host control of the microbiome that is independent of diet/environment

A heritable subset of the core rumen microbiome dic- tates dairy cow productivity and emissions
R. JOHN WALLACE (D), GOOR SASSON, PHILIP C. GARNSWORTHY (D), ILMA TAPIO (D), EMMA GREGSON, PAOLO BANI (D), PEKKA HUHTANEN (D), ALI R. BAYAT (D), FRANCESCO STROZZI, [], AND ITZHAK MIZRAHI (D) +23 authors Authors Info & Affiliations
SCIENCE ADVANCES - 3 Jul 2019 · Vol 5, Issue 7 · DOI: 10.1126/sciadv.aav8391

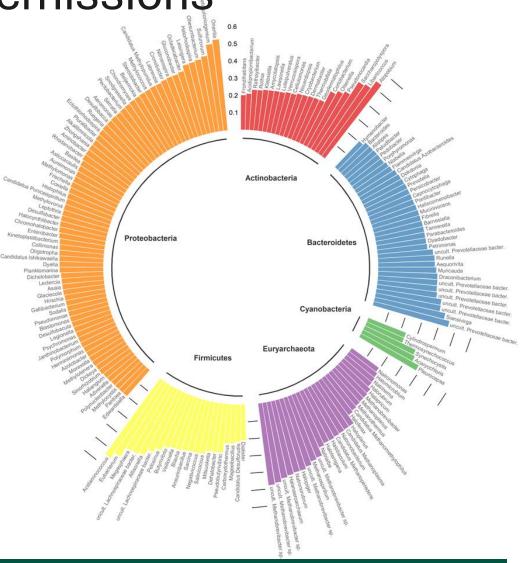
Bovine host genome acts on rumen microbiome function linked to methane emissions

- Martínez-Álvaro, et al. Commun Biol, 2022
- 17% of rumen microbial genera had significant host genomic effects (h² = 0.13-0.61)
- 29 microbial genera host-genomically correlated with methane emissions (r = 0.59-0.93)

Bovine host genome acts on rumen microbiome function linked to methane emissions

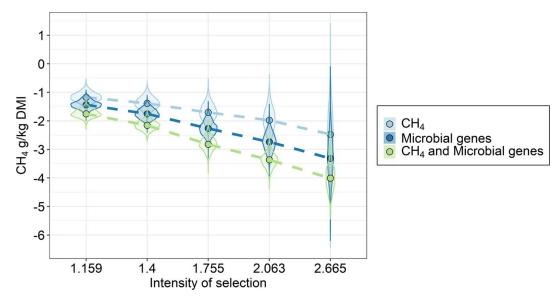
• Martínez-Álvaro, et al. Commun Biol, 2022

Highlights the strength of a common host genomic control of specific microbial processes and CH₄



Bovine host genome acts on rumen microbiome function linked to methane emissions

- Selection based on:
 - 30 most informative microbial genes- mitigation potential of 17%
 - CH₄ phenotype using respiration chambers 13% mitigation potential

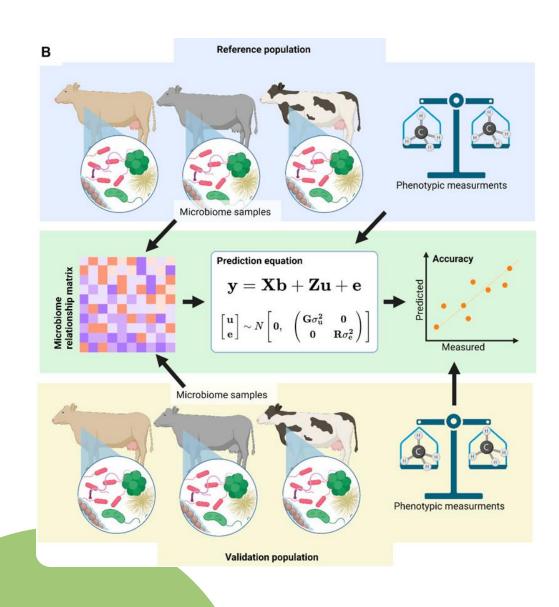


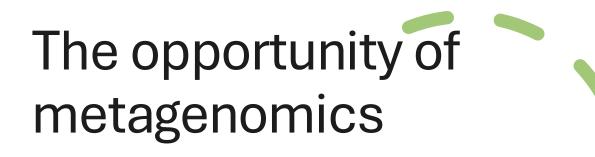
The host genome affects the comprehensive function of the microbiome in the cattle rumen

Hypotheses

As the microbiome contributes a significant proportion of the variance of many traits, we may be able to use metagenomics to capture additional variance

Due to host-microbiome interactions, we may be able to positively select for more desirable microbiomes





- Metagenomic prediction
 - Two types:
 - Phenotypic prediction
 - Proxy trait to predict genetic merit
 - Can be used in tandem with genotypes to inform prediction

OPEN O ACCESS Freely available online

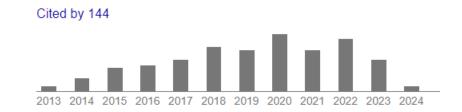
- First report of using BLUP for prediction, fitting metagenomic profiles from shotgun sequencing
- Metagenomic Predictions: From Microbiome to Complex Health and Environmental Phenotypes in Humans and Cattle

Elizabeth M. Ross^{1,2,3}*, Peter J. Moate⁴, Leah C. Marett⁴, Ben G. Cocks^{1,2,3}, Ben J. Hayes^{1,2,3}

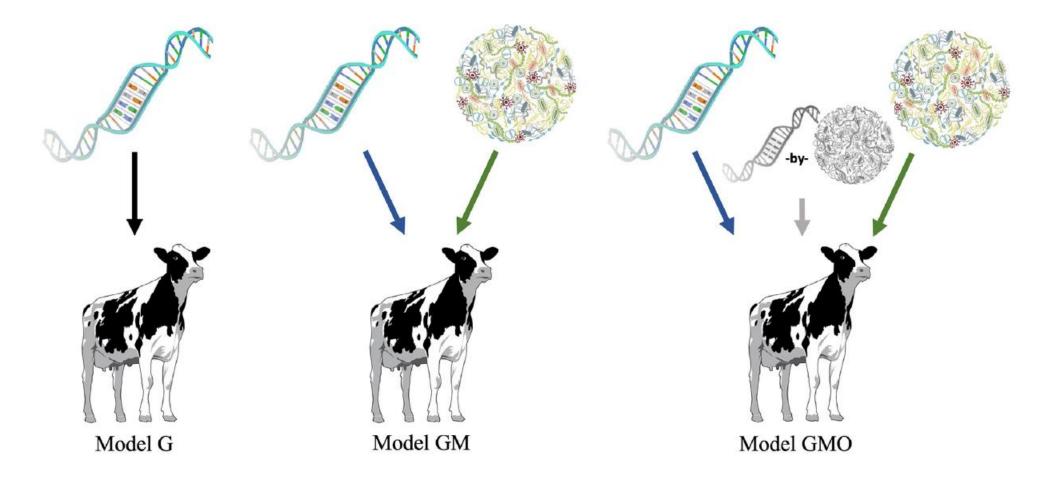
• 2013

1 Biosciences Research Division, Department of Environment and Primary Industries, Bundoora, Victoria, Australia, 2 Dairy Futures Cooperative Research Centre, Bundoora, Victoria, Australia, 3 La Trobe University, Bundoora, Victoria, Australia, 4 Future Farming Systems Division, Department of Environment and Primary Industries, Ellinbank, Victoria, Australia

- Inspired by genomic BLUP, fitting a GRM
- Inspired by rapidly decreasing sequencing costs
- Inspired by difficulty measuring methane phenotypes and need for a proxy
- Prediction accuracy for methane = 0.466
- max n = 47 cattle

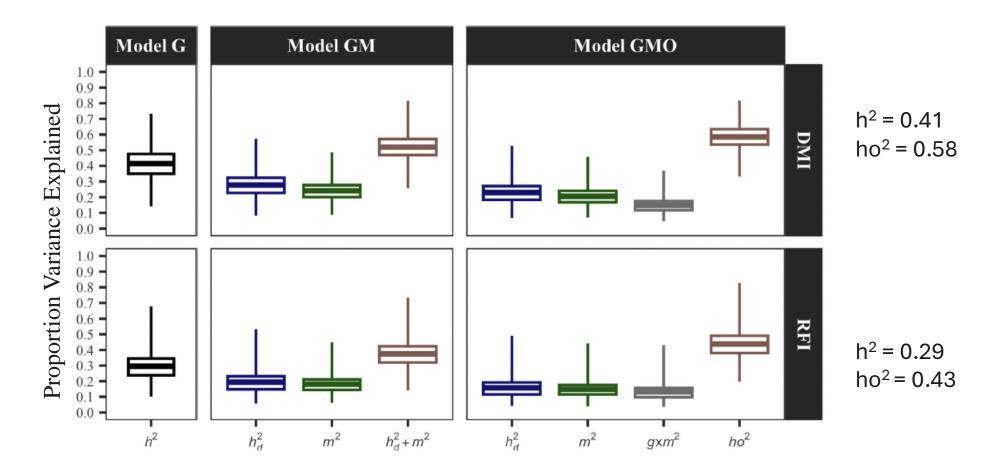


Holobiont prediction

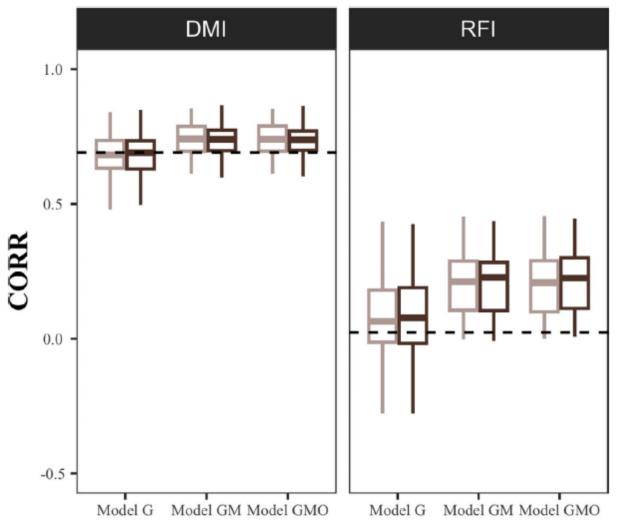


Holobiont prediction

$$ho^2 = (\sigma_{g_d}^2 + \sigma_m^2 + \sigma_{gxm}^2)/\sigma_y^2$$



Holobiont prediction

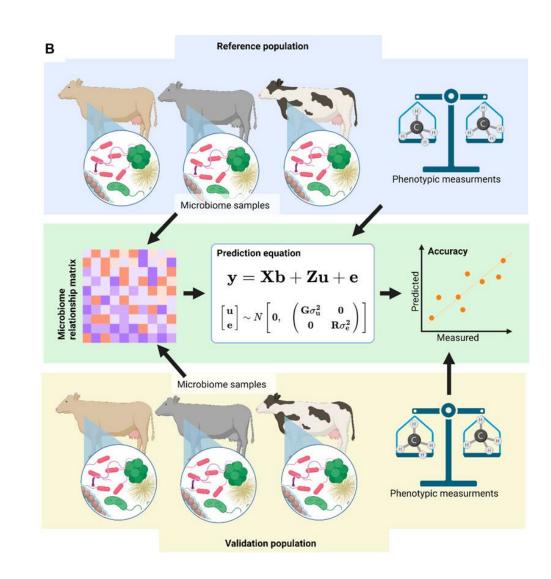


• The differences obtained between the h^2 and the h_d^2 strongly suggest that the microbiome mediates part of the host genetic effect

- Swine:
 - Prediction accuracy significantly increased by including microbiome data – more than 100% increase for back fat
- Bunnies:
 - Accurately sorted high vs low lifetime productivity females with 94% accuracy using just 53 amplicon seq variants
- Sheep:
 - Combining the metagenome profile with host genotype explained more than 70% of the variation in methane emissions and residual feed intake.
 - Increased prediction accuracy for growth and fleece weight

Steps:

- 1. Sample and phenotype collection
- 2. Sequencing the metagenome
- 3. Classification
- 4. Quantitative analysis
 - a. Relationship matrix
 - b. Prediction modeling



- 1. Sample and phenotype collection
 - Consider trait of interest and how that relates to the microbial community being sampled
 - Rumen, fecal, oral
 - Could be anything!

Photo credit: E. Ross, personal comm.

2. Sequencing the metagenome

Amplicon sequencing (16S, 18S, etc.)

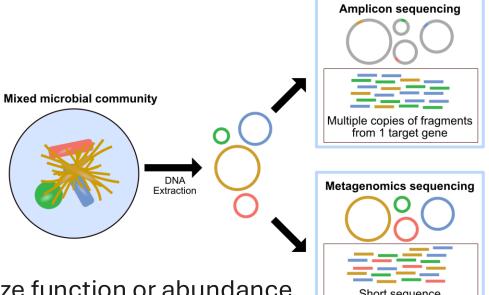
- Pro: Most cost effective option
- Cons: Lower resolution, more difficult to characterize function or abundance

Short read sequencing

- Pro: Less biased approach
- Con: Single reads don't span entire genes

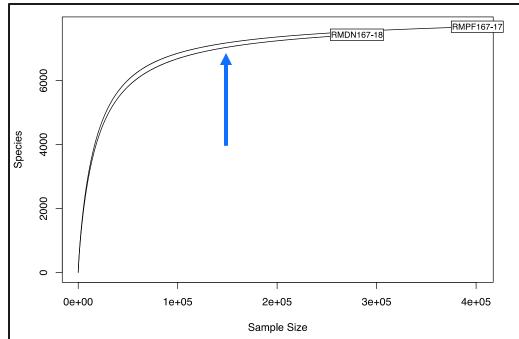
Long read sequencing

- Pro: Best taxonomic classification, highest alignment rate
- Con: More expensive

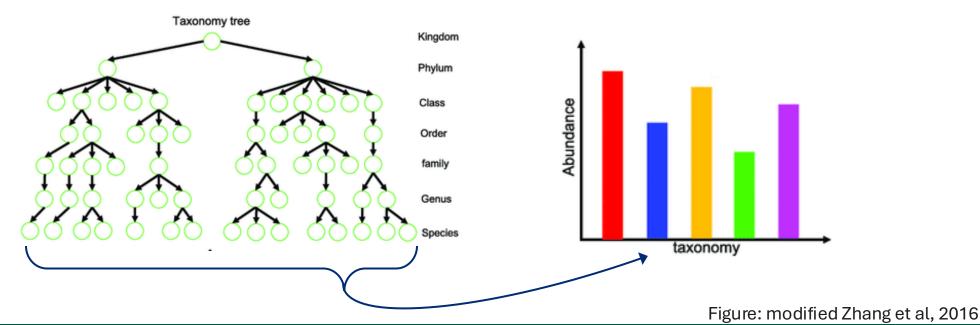


fragments from "all" DNA

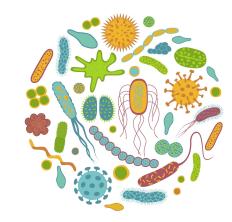
- 2. Sequencing the metagenome
 - Sequencing depth example:
 - Short read: 3 million reads (Ross et al., 2012)
 - Long read: 1.5 million reads per sample (E. Ross, personal comm., 2024)



- 3. Classification taxonomical or functional
 - **Taxonomical** which species are present?
 - Direct alignment assigns taxonomy using either public or assembled reference dataset
 - Reference free approaches based on sequence similarity



- 3. Classification taxonomical or functional
 - Taxonomical which species are present?
 - Genus or species
 - OTUs Operational Taxonomic Units
 - Clusters sequence based on percent similarity challenges with between study comparisons
 - ASVs Amplicon Sequence Variants
 - Distinguishes single nucleotides reproducible across studies



- 3. Classification taxonomical or functional
 - Functional what do the species do?
 - Gene content direct alignment to reference dataset
 - Can be further classified using functional annotation

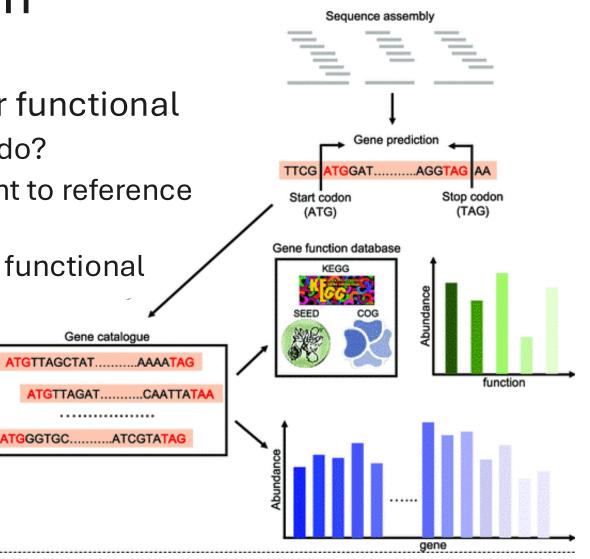


Figure: modified Zhang et al, 2016

	Taxa 1	Taxa 2	Taxa 3	Taxa 4	Taxa 5	Taxa 6	Taxa 7	Taxa 8	Taxa 9	Taxa 10	Taxa 11	Taxa 12
Animal 1	690	42	33	73	216	670	46	64	104	58	490	98
Animal 2	2475	786	1555	1124	2967	3086	555	1541	443	93	1174	2638
Animal 3	993	489	455	176	2506	1720	566	723	168	242	633	2583
Animal 4	343	455	70	467	267	196	5	307	219	10	88	278
Animal 5	762	37	1014	732	2145	1449	704	794	253	14	1618	1472
Animal 6	377	82	372	233	707	182	26	49	5	24	331	331
Animal 7	3705	855	1326	1403	3426	2620	460	1741	764	355	2224	127
Animal 8	559	39	5	1506	1961	2219	944	355	304	231	2121	2117
Animal 9	220	53	352	375	646	578	268	173	78	62	395	34
Animal 10	1762	1316	329	843	261	1466	341	1759	364	43	478	1042
Animal 11	327	27	102	252	350	128	77	398	5	34	523	121
Animal 12	2600	1623	369	1726	699	51	313	997	1042	398	1162	743
Animal 13	1835	817	1828	1294	2528	1813	71	2216	831	290	2169	914
Animal 14	406	81	70	88	618	485	195	126	22	47	271	90
Animal 15	2057	860	619	1321	2228	1147	477	1198	407	252	1443	1546
Animal 16	206	563	636	239	406	1304	375	884	132	79	77	1288
Animal 17	71	1552	1385	944	278	1536	266	2222	536	313	1509	809

- 4. Quantitative Analysis
 - a. Metagenomic relational matrices (MRM)
 - $M = \frac{XX'}{n}$ (Ross et al., 2013; Difford et al., 2018; Saborio-Montero et al., 2021; Boggio et al., 2023)
 - X is the matrix of natural log transformed bacterial and archaeal relative abundance

<u>Alternative:</u>

• Heritabilities of the microbiome were estimated by fitting the 3361 [microbes] as observed traits in 3361 univariate genomic models. (Martínez-Álvaro, et al., 2024)

***Nearly any approach requires a normalization or scaling step

- 4. Quantitative Analysis
 - b. Prediction modeling
 - Phenotype vs proxy trait breeding value
 - Linear, Bayesian, machine learning
 - BLUP Ross et al., 2013
 - BayesR-like Zhang et al, ISME, 2018
 - Machine learning Maltecca et al, Sci Rep, 2019
 - Fitting both the GRM and MRM simultaneously
 - Separate variance estimates
 - Microbiability and heritability

- Value proposition of metagenomics:
 - Capturing trait variance for low-moderate heritability traits
 - Especially, difficult to measure traits
- Cost of:
 - Long read metagenomic sequence: \$100 / sample
 - Feed efficiency trial: \$750 / head
 - Year of missed cow production due to infertility: \$900 (Prevatt et al, 2018)
 - BRD prevention, management, treatment, herd losses = \$1 billion per year to industry (TAMU)

Facilitating genetic selection for reduced enteric methane in northern Australia

• Simulated Case Study – E. Ross, unpublished

Assumptions:

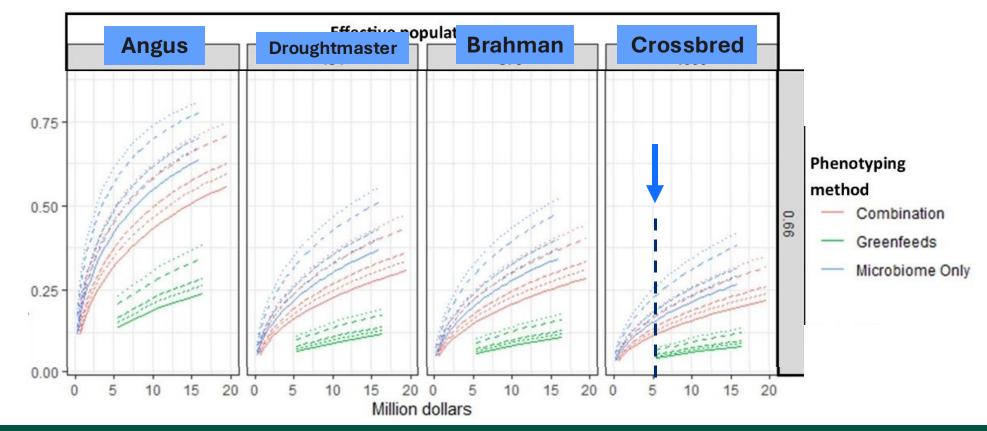
- 1. Large effective population size: N = 1000
- 2. Heritability of methane: $h^2 = 0.17$ (Gonzalas-Recio et al., 2022)
- 3. Genetic correlation between CH_4 : CO_2 ratio and microbiome predicted methane = 0.66 (Bilton et al., 2022)
- 4. Cost of metagenomic sequenced sample: \$160 AUD
- 5. Cost of GreenFeed phenotype: \$2750 AUD

• The expected prediction accuracy was calculated using the equation from Daetwyler et al (2008):

•
$$r = \sqrt{\frac{Nh^2}{Nh^2 + M_e}}$$

- Scaled by genetic corr. between direct and microbiome predicted methane
- Scenario: All animals have a metagenomic profile, 5% have GreenFeed phenotype

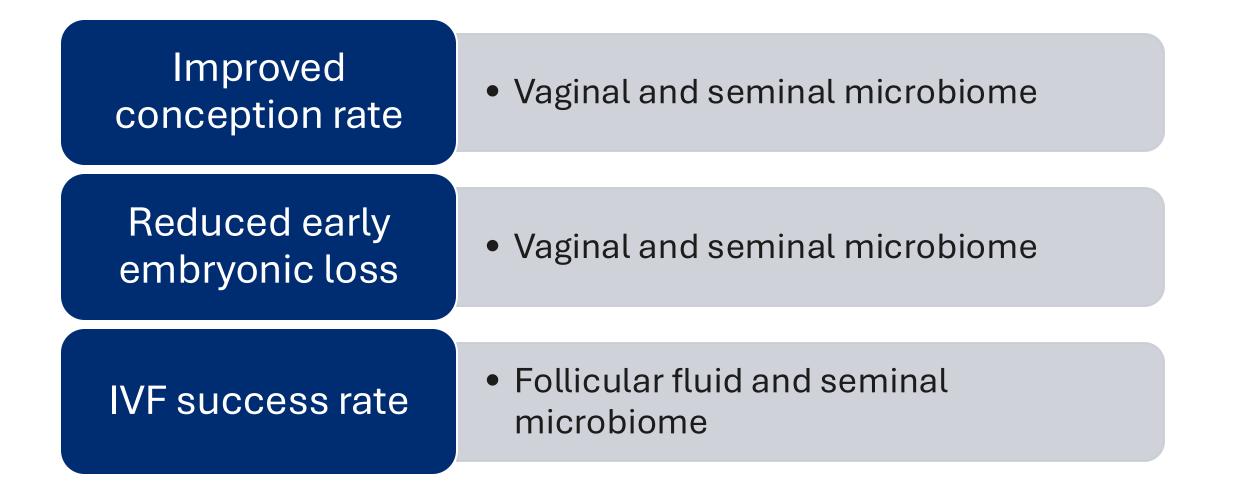
• Scenario: All animals have a metagenomic profile, 5% have GreenFeed phenotype



Future perspective: Improving disease resistance

BRD resistance	 Nasal microbiome 					
Pink eye resistance	 Nasal or ocular microbiome 					
Venereal disease resistance	 Vaginal and seminal microbiome 					

Future perspective: Improved reproduction



Challenges

- Required reference population sizes
 - Still a quantitative trait of low-moderate heritability
 - Still need large groups of animals with metagenomic profiles to be useful
 - p > n many datasets currently have more metagenomic classifications than there are sequenced animals

Challenges

Data interpretation

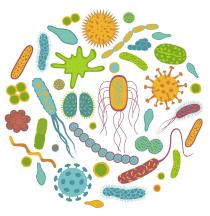
- Effect direction of metagenomic predictions is not necessarily known
 - Is the microbiome affecting the phenotype, or is the phenotype affecting the microbiome?
 - Enteric methane (microbiome effects phenotype)
 - Autism in humans (phenotype effects microbiome)
- Timing of sampling and reporting of metadata to compare studies
 - Ex: reference free approaches, especially OTUs, are difficult to compare
 - Population and environmental differences
 - Dietary and developmental differences

Ongoing research questions

- Underlying biology
- Optimized modeling approaches
- Estimation of metagenomic relationships
- Optimized sequencing requirements
- Classification approaches
- Sufficient reference datasets for alignment
- Host-metagenome interactions
- Proof-of-concept for selection using metagenomic informed predictions

Summary

- The microbiome has potentially large effects on expression of traits of interest
- Between animal variation can be profiled using metagenomics
- Metagenomic prediction is an opportunity to increase prediction accuracy or use the metagenome as a proxy trait
- There is ample room for improvement opportunities!



Acknowledgements

University of Queensland **Elizabeth Ross Chian Ong**

USMARC Larry Kuehn Jim Wells Tara McDaneld **Tim Smith** Kristin Kuhn **Sungbong Shin**

University of Nebraska – Lincoln Samodha Fernando

THE UNIVERSITY OF QUEENSLAND AUSTRALIA

USDA Agricultural Research Service **U.S. DEPARTMENT OF AGRICULTURE**

Questions?

Contact:

Bailey Engle 402-762-4264 bailey.engle@usda.gov

Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable. USDA is an equal opportunity provider and employer.

Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE