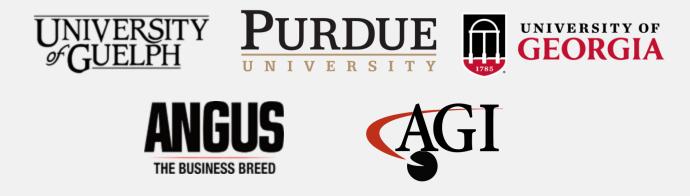
American Angus Association's Functional Longevity EPD

Cow longevity drives profitability

- Ranked as a priority for R&D by Angus breeders
- Improve/add tools to improve maternal function
- Targeting reproduction/fertility
 - Heifer pregnancy is one tool in this area


			Maternal		
HP	CEM	Milk	MkH	MW	МН
Acc	Acc	Acc	MkD	Acc	Acc
%	%	%		%	%
Daus	Daus			Prog	Prog

Fertility traits are challenging

- Usually lowly heritable (h² < 0.2)
- "Sex limited" (cow and bull fertility traits are not the same phenotypes)
- Difficult to obtain complete data for long periods
 - Good data recordkeeping
 - Faster generation turn over at the seedstock level
 - Capture data on commercial cow herds?

Functional Longevity journey at AAA

- Recent research started around 2018
- Data exploration
- Trait definition

• Modeling approach

Selection for cows that stay in the herd and produce a calf every year

- Traditional longevity: cows that stay in the herd
 - Binary phenotype: Was the cow in the herd?
- Functional longevity: cows that stay in the herd and produce a calf
 - Binary phenotype: Did the cow produce a calf?
- Animals with known cull reason

💣 animals

MDPI

Article

Using Random Regression Models to Genetically Evaluate Functional Longevity Traits in North American Angus Cattle

Hinayah R. Oliveira ^{1,2,*} ^(D), Luiz F. Brito ² ^(D), Stephen P. Miller ³ and Flavio S. Schenkel ¹ ^(D)

Article

Impact of Censored or Penalized Data in the Genetic Evaluation of Two Longevity Indicator Traits Using Random Regression Models in North American Angus Cattle

Hinayah R. Oliveira ^{1,2,*}, Stephen P. Miller ³, Luiz F. Brito ² and Flavio S. Schenkel ¹

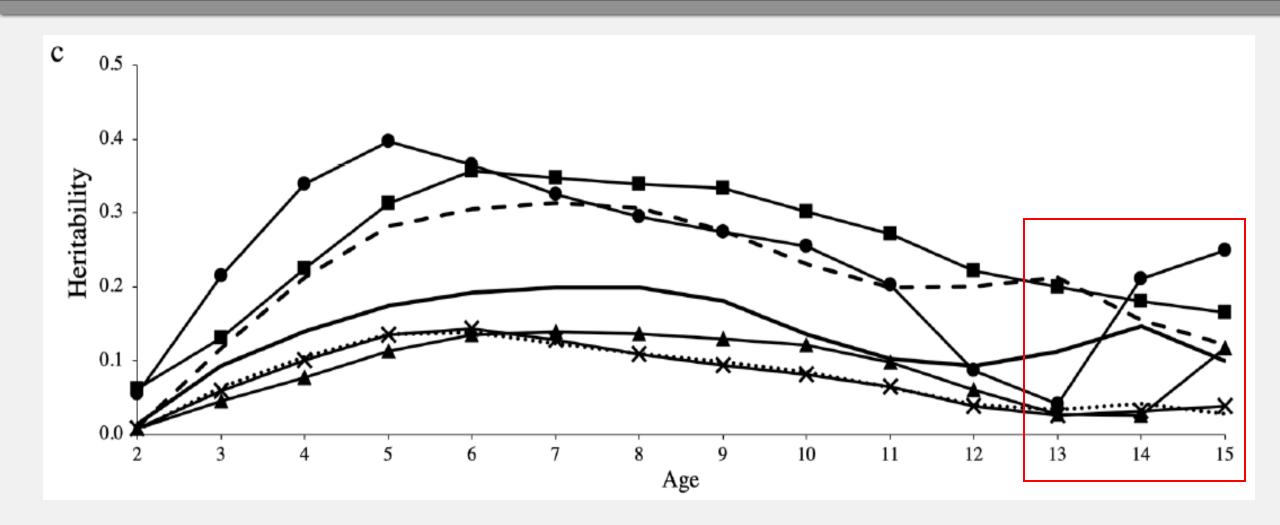
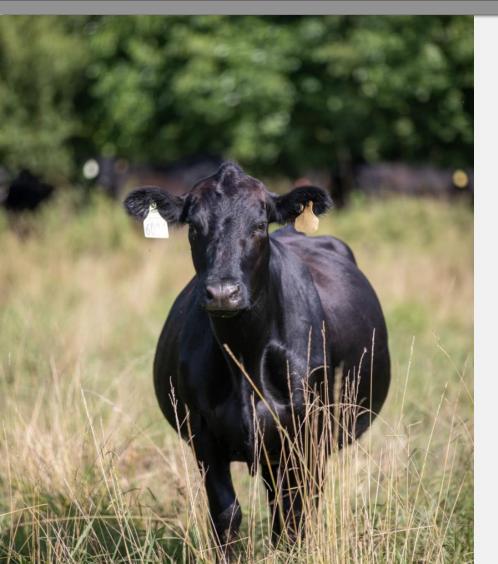

Exploring culling reasons and age ranges

Table 3. Average heritabilities (±SE) estimated considering all ages (i.e., from 2 to 15 years) and ages between 3 and 12 years-old, for all longevity definitions and culling reasons.

Ages	Culling Reason	Longevity Definition			
Ages	Curing Reason	¹ TL	² FL _a	³ FL _b	
	Natural death	0.19 ± 0.02	0.15 ± 0.02	0.21 ± 0.02	
	Structural problems	0.23 ± 0.04	0.17 ± 0.02	0.24 ± 0.03	
	Disease	0.19 ± 0.03	0.19 ± 0.02	0.25 ± 0.02	
All	Fertility	0.07 ± 0.01	0.07 ± 0.01	0.08 ± 0.01	
2-15 years	Performance	0.10 ± 0.02	0.08 ± 0.01	0.10 ± 0.01	
Z-15 years	Miscellaneous	0.08 ± 0.01	0.07 ± 0.01	0.08 ± 0.01	
	All	0.11 ± 0.01	0.09 ± 0.01	0.13 ± 0.01	

¹TL: Traditional longevity. ²FL_a: Functional longevity assuming 0 after the cow was culled or if the cow did not record a calf at the specified age. ³FL_b: Functional longevity assuming 0 only after the cow was culled, and missing records when no calving information was found at the specified age.

Exploring culling reasons and age ranges Heritability trajectories



Recent research focused on implementation

- Building on the early research
- Final trait definition
- Modeling
- Implementation for a weekly evaluation

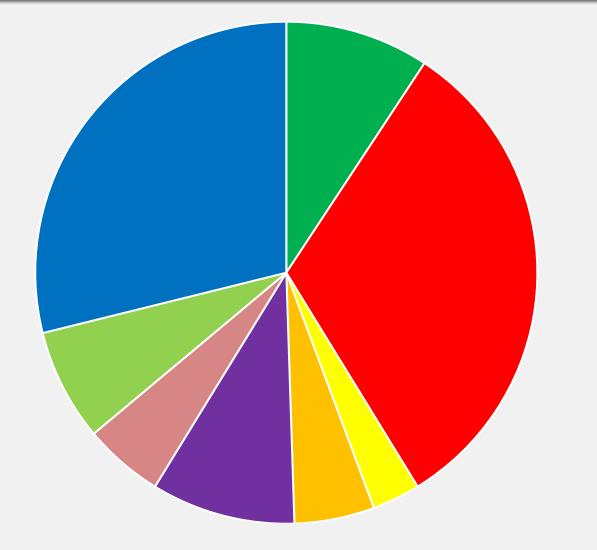
Functional Longevity

• Cows that stay in the herd and produce a calf every year

Definition: on average, number of calves a sires daughters are predicted to produce by 6 years of age compared to other sires daughters

Data: calving and culling records

Functional Longevity research EPD ANGUS (GI


Release: Oct 25 2023 Updated: Feb 15 2024

Dive into the Data

Why do females leave the herd?

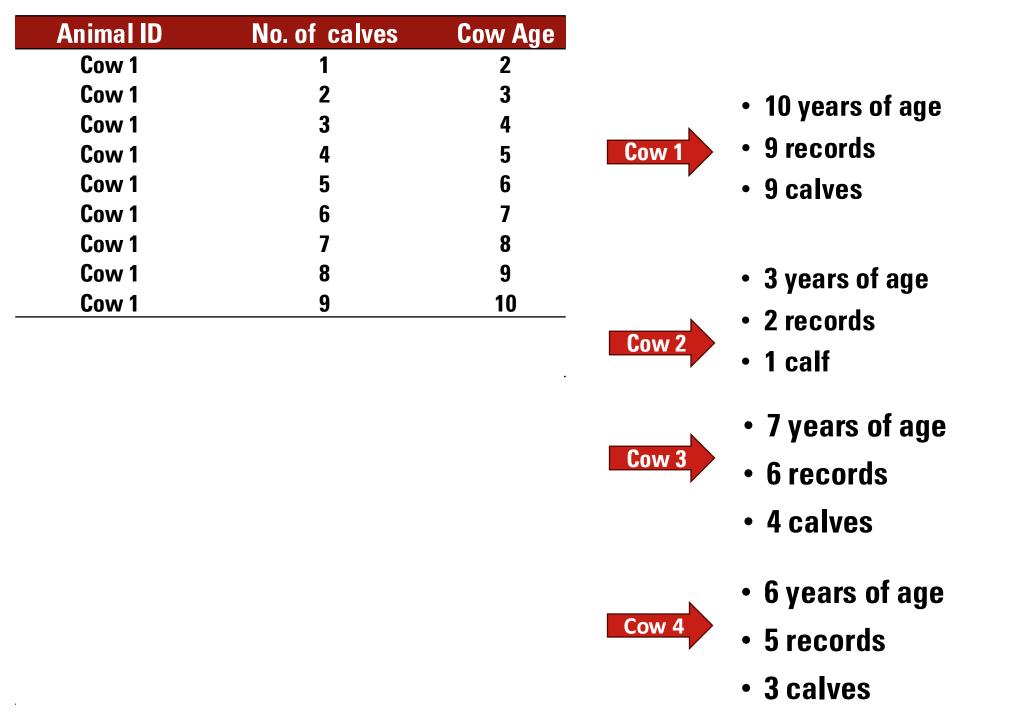
- Age
- Fertility
- Injury/Illness
- Management
- Miscellaneous
- Structural
- Died
- Sold as Commercial

How much data is in the FL evaluation

- FL data includes American Angus Association and Canadian Angus Association data
- 1.9M cows with records
 - 8.3M records total
- 1.5M genotyped animals
- 4M animals in the pedigree

Majority of the data is outside our IR program

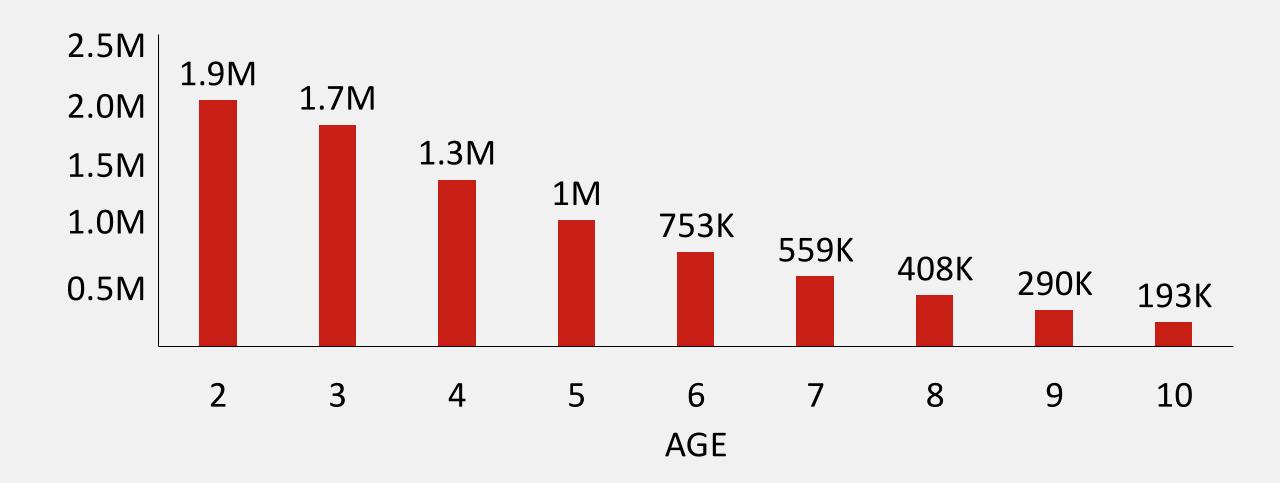
Program	N cows	N records
IR or MP	276K	1.2M
Not in IR or MP	1.7M	7.1M
Total	1.9M	8.3M



What records are used?

	No.	Dam
Animal ID	of calves	Age
Cow 1	1	2
Cow 1	2	3
Cow 1	3	4
Cow 1	4	5
Cow 1	5	6
Cow 1	6	7
Cow 1	7	8
Cow 1	8	9
Cow 1	9	10
Cow 2	1	2
Cow 2	1	3
Cow 3	1	2
Cow 3	1	3
Cow 3	2	4
Cow 3	3	5
Cow 3	3	6
Cow 3	4	7
Cow 4	1	2
Cow 4	1	3
Cow 4	2	4
Cow 4	2	5
Cow 4	3	6

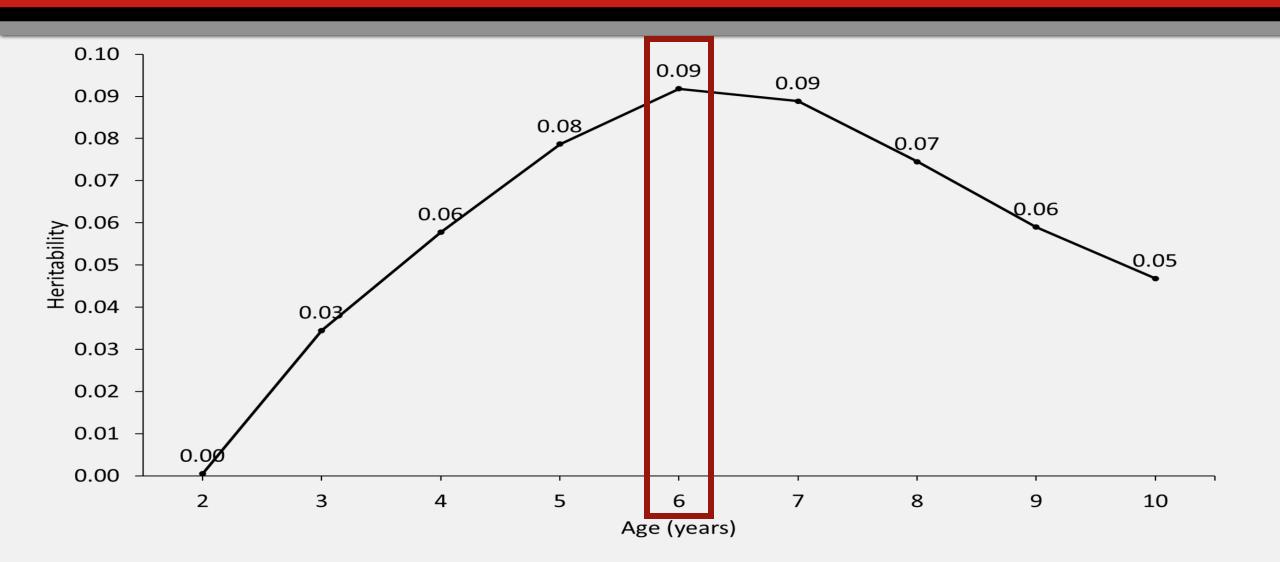
• Inventory Reporting data


- Calving and culling records since 1990
- Must calves as a two-year-old female
- Ages 2-10 (9 possible calving events)
- Phenotype is number of calves
- Model
 - Random regression model

Distribution of Age, N records and N calves

	Average	Min	Max	SD
Age	6	2	10	2.5
N records	5	1	9	2.5

Distribution of cows with records by age


Number of calves by age distribution

					Num	ber of c	alves			
Age	N cows	1	2	3	4	5	6	7	8	9
2	1.9M	100%								
3	1.7M	27%	73%							
4	1.3M	4%	31%	65%		At age	6, there a	ıre a few c	ows with	only
5	1M	0%	10%	30%	59%	•	s reported	-		,
6	753K	0%	2%	13%	30%	55%				
7	559K	0%	0%	4%	14%	30%	52%			
8	408K	0%	0%	1%	6%	15%	30%	48%		
9	290K	0%	0%	0%	2%	7%	16%	30%	44%	
10	193K	0%	0%	0%	1%	3%	7%	16%	32%	42%

More inventory reporting data will help us drill down these relationships

Heritability and genetic correlations across ages

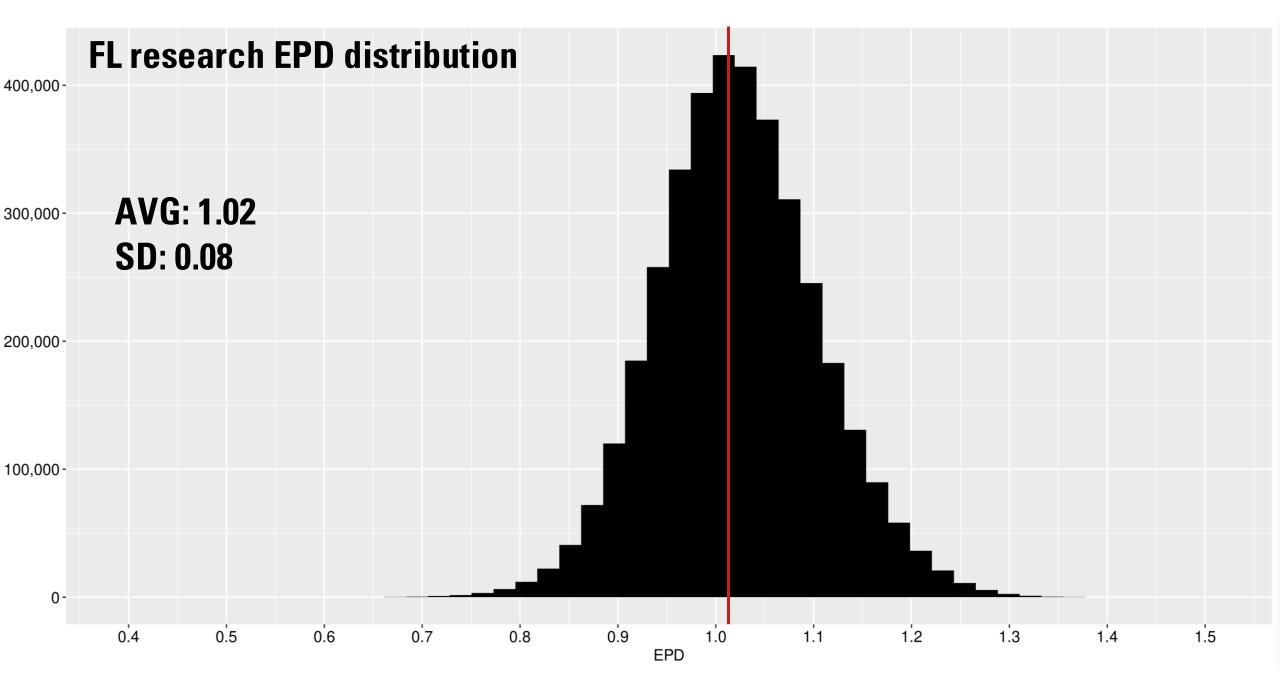
Functional Longevity heritability is 0.09

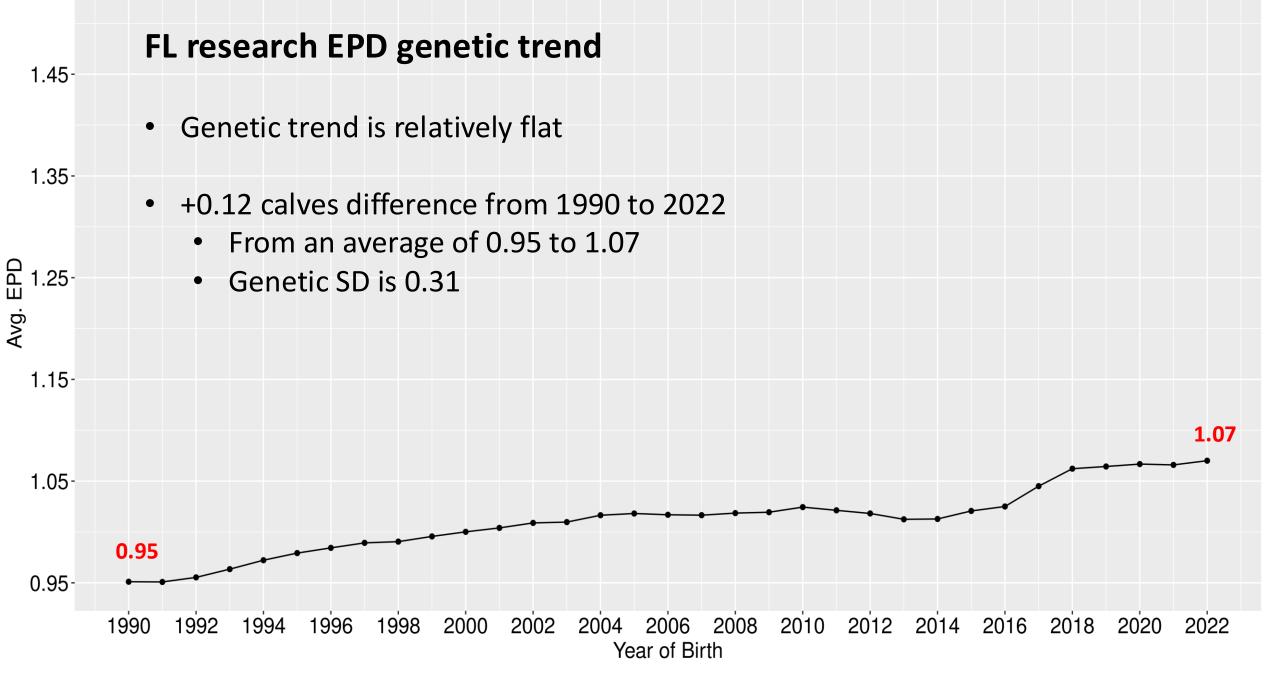
EPD are highly correlated after age 6

Age	3	4	5	6	7	8	9	10
3	0.03	0.99	0.97	0.94	0.90	0.84	0.79	0.73
4		0.06	0.99	0.97	0.94	0.91	0.86	0.81
5			0.08	0.99	0.98	0.95	0.91	0.87
6				0.09	0.99	0.98	0.95	0.92
7					0.09	0.99	0.98	0.96
8		symmetric				0.07	≥0.99	0.98
9							0.06	≥0.99
10								0.05

Predicting the EPD at 6 years of Age

- Heritability is maximized at Age 6 (0.09)
- Genetic correlations are high >0.90 for ages 6-10
 - Same trait at ages 6-10
 - Minimal re-ranking of sires
- Data still included from 7-10 years to add accuracy


Practical Application



Preliminary research EPD and ACC distribution

	Number of animals	Average	Min	Мах	SD
EPD	3.8M	1.01	0.39	1.48	0.08
ACC	3.8M	0.21	0.05	0.95	0.10

• Difference from highest EPD to lowest EPD is ~1.0 calf

FL Units: number of calves by 6 years of age

Sire	FL EPD	
А	1.5	
В	0.5	
Difference	1.0	

- <u>On average</u>, sire A's daughters are expected to produce 1 more calf by age 6 compared to sire B's daughters
- If the breeding goal is to increase the number of calves produced, a sire with a higher FL EPD is more desirable compared to a sire with a lower FL EPD

Checking our predictions

Higher ranked sires produce more calves on average

Sires born before 2010 with at least 10 daughters with 10 years of records.

FL EPD percentile	N sires	Avg. N calves reported	Difference (N calves)
1%	255	4.6	1 /
99%	352	3.2	1.4

Maternal traits have lower heritability

- FL h² is 0.09
- Even more important to collect data

- Individual cow record is largely influenced by the environment
- EPD is the best tool to identify animals with superior genetic merit

Next steps on FL at AAA

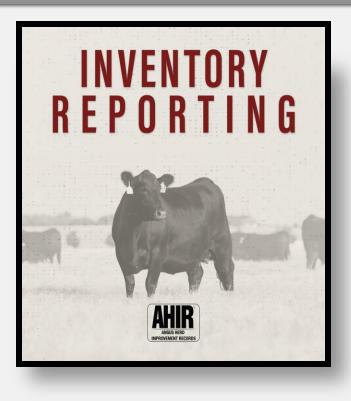
AGI

Continued research

- Stay in a research for the next several months
 - Continue updating research EPDs as more data comes in
- Estimate genetic correlations with other traits
- Model functional longevity into Maternal Weaned Calf Value (\$M)
- Inventory reporting vs non-inventory reporting data

AGI Summer interns to continue the work

Zuleica Trujano PhD student University of Georgia



Hui Wen PhD student Purdue University

• Genetic correlations between FL and other traits

Complete data reporting is vital

- It is important to know when she had a calf
- Even more important to know when she did not and why
- Enable future research and development of new tools
- Angus Breeders are encouraged to participate on AHIR® Inventory Reporting
 - Enrolment from Nov 1st to Jan 15th and from May 1st to July 15th

More information available

by Kelli Retallick-Riley, Angus Genetics Inc.

by Andre Garcia, Angus Genetics Inc.

Staying Power

American Angus Association released Functional Longevity research EPD Oct. 25, 2023.

Functional Longevity Research EPD

A welcome addition to the selection toolbox.

American Angus Association[®] Functional Longevity (FL) Research Report Updated October 25, 2023

Background

Profitability and sustainability of beef cattle production depend on many factors and cow longevity is certainly one of them. Angus breeders have ranked cow longevity as a priority, along with associated research and the development of new tools and programs, within the American Angus Association.

Thank you

Andre Garcia

Sr. Geneticist agarcia@angus.org

