Unraveling high progeny performance sired by 20th century bulls El Hamidi Hay, Ashley Ling, Emmanuel Lozada-Soto, David Thomas, Nick Jorgensen and Harvey Blackburn #### USDA's Gene Bank Substantial collection of multibreed cattle genetics has been developed - 11,990 animals and 270,768 samples - Bull birth years range from 1943 to the 2022 #### Collection use - Introduce genetic diversity - Alleviate inbreeding depression or introducing allelic combinations of interest - Address genetic improvement goals or corrective mating - Reestablish breeds/population lost due to disease #### **Major Question** Can bulls from the collection be used without compromising performance? ### Unexpected Results From Holstein Collection Use Two 1960-70's era bulls were used to reintroduce Y chromosomes missing from today's Holstein Progeny compared to Penn State Herd and commercial herds | Trait | Old | Modern | | |---------------------------|---------|----------|-------------| | Genomic PTA Milk | -785 | 321 | | | Genomic NM\$ | -176 | 236 | | | | | | | | Lifetime milk lbs | 82,147 | 62,866 | | | | | | | | | Modern | Pilot F1 | Cuthbert F1 | | Ave total length Kb | 435,334 | 84,553 | 99,543 | | % homozygosity base pairs | 17% | 3% | 4% | ### Case study: Jorgensen Breeder's goals improve maternal characteristics of herd Use of historically significant Angus bulls from the USDA National Animal Germplasm Program (NAGP) collection BY 1997 BY 1958 ## Objectives Evaluate the performance of progeny using older sire genetics Characterize genomic properties of older and contemporary bulls and their progeny Detect selection signatures Evaluate more progeny than Holstein study ## Pedigree Pedigree included 88,721 animals with birth years from 1937 to 2023 Pedigree quality was evaluated Primary focus on data from nucleus herd ## Clustering Analysis Pedigree relationships used Wards minimum variance clustering method was used. Six clusters identified using pseudo-t test. Suggests genetic variability among breeding program within the herd ## Phenotypic and genomic data available Number of phenotypes of progeny out of ≥2016 dams | Bulls | Birth Weight | Weaning Weight | Yearling Weight | |--------|--------------|----------------|-----------------| | Older | 214 | 137 | 18 | | Recent | 4791 | 3144 | 1181 | Genomic data included 40,647 SNP markers on 28,916 individuals. Birth year of genotyped animals ranged from 2010 to 2021 ## Genetic Trends - AAA Overall Genetic Trend for Growth Traits and AAA EPDs of Old Sires with Modern JLC Progeny #### Birth Weight #### Weaning Weight #### Yearling Weight ## Genomic estimated breeding values #### Mixed model #### **Fixed Fffects** - Mean - Sex - Dam Heifer/Cow Status - IVF status - HYS - Age (for weaning and yearling traits) #### Random Effects - Animal - Maternal GEBVs were estimated using genomic data and single-step GBLUP as implemented in BLUPF90 Adjusted phenotypes were corrected for all fixed effects in predictf90 ### Genetic Trends for JLC Bulls over time Weaning Weight Birth Weight ## Yearling Weight # Adjusted body weights based upon difference in the sire and dam's age #### Birth Weight #### Weaning Weight #### Yearling Weight ## Analyzing Inbreeding ## Inbreeding and Heterozygosity #### **Pedigree inbreeding** | Trait | Recent bulls
Pedigree | ' progeny
Genomic | Older bulls' proge
Pedigree | ny
Genomic | |----------|--------------------------|----------------------|--------------------------------|---------------| | BWT, lbs | -2.75 (4.41) | 0.0057 (0.01) | 25.55 (72.16) | 0.59 (0.32) | | WWT, lbs | -20.54 (31.70) | -1.06(0.15)*** | 41.18 (36.10) | 8.02 (2.31)** | | YWT, lbs | -54.72 (84.70) | -1.55 (0.46)*** | 107.4 (87.30) | 30.25(7.08)* | #### **Genomic heterozygosity** | Trait | Recent bulls' progeny | Older bulls'
progeny | |----------|-----------------------|-------------------------| | BWT, lbs | 0.09 (0.06) | -18.9(0.83)* | | WWT, lbs | 2.98 (0.54)*** | -21.20(5.98)** | | YWT, lbs | 7.4(1.64)*** | -72.63(18.80)*** | * *P* < 0.05; ** *P* < 0.01; *** *P* < 0.001 ## Runs of Homozygosity ## Runs of homozygosity (ROH) ## Obtaining Runs of Homozygosity #### Used PLINK to obtain ROH - Scanning window parameters - Window size = 1Mbp - Window heterozygous SNP = 2 - Window missing SNP = 1 #### ROH parameters - Density = 1 SNP/200kbp - Maximum gap of 1 Mbp between SNP in ROH - Minimum ROH size = 1 Mbp and 15 SNP - ROH heterozygous SNP = 2 ## ROH summary statistics | Parameter | Mean | Median | Standard
deviation | Minimum | Maximum | |-----------------------------------|--------|--------|-----------------------|---------|---------| | Number of ROH | 258 | 252 | 51.09 | 101 | 592 | | Average ROH length | 1.88 | 1.95 | 0.16 | 1.44 | 2.79 | | Average
combined ROH
length | 486.65 | 476.46 | 116.34 | 160.52 | 1584.02 | ## Runs of Homozygosity For every marker we calculated the proportion of animals that have an ROH. Significance threshold is based on the 1st percentile of homozygosity on the marker (excluding chromosome 20). ## Runs of Homozygosity #### Old Bulls ## Enrichment of QTL regions in chr 20 and 21 #### Top 5 enriched trait-chromosome | Trait | QTL Type | LogP | | |-------------------------|--------------|-------|--| | Age at puberty (21) | Reproduction | 5.27 | | | Average daily gain (21) | Production | 1.37 | | | Maturity rate (21) | Reproduction | 2.10 | | | Sexual precocity (21) | Reproduction | 2.97 | | | Shear force (21) | Meat | 15.11 | | #### **Top 5 enriched traits** | Trait | QTL Type | LogP | |------------------|--------------|-------| | Age at puberty | Reproduction | 9.19 | | Maturity rate | Production | 3.13 | | Sexual precocity | Reproduction | 4.10 | | Shear force | Meat | 11.09 | #### Top enriched type | QTL Type | LogP | |------------------|------| | Meat and Carcass | 3.80 | | Reproduction | 1.99 | ## Shared runs of homozygosity regions ## F_{ST} Analysis Global estimate between older and recent bulls offspring = 0.03 ## Enrichment of QTL regions #### Top 5 enriched trait-chromosome | Trait | QTL Type | QTL Ratio | |--|------------------|-----------| | Milk fat % (20) | Milk | 0.42 | | Milk glycosylated kappa-casein percentage (15) | Milk | 0.94 | | Milk linoleic acid content (15) | Milk | 1.00 | | Meat color (14) | Meat and carcass | 1.00 | | Milk yield (20) | Milk | 0.32 | ### Final remarks #### Selection works • The additive model is not perfect Performance of progeny was not negatively impacted – opens new opportunities in selection programs Use of older genetics beneficial - Corrective mating - Injecting genetic diversity - Alleviate inbreeding depression NAGP collection is a valuable resource for breeders ## Acknowledgments Jorgensen Land & Cattle **David Thomas** **Chad Dechow** Collaborators Agricultural Research Service PennState Department of Animal Science ## Questions Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable. USDA is an equal opportunity provider and employer