Unraveling high progeny performance sired by 20th century bulls

El Hamidi Hay, Ashley Ling, Emmanuel Lozada-Soto, David Thomas, Nick Jorgensen and Harvey Blackburn

USDA's Gene Bank

Substantial collection of multibreed cattle genetics has been developed

- 11,990 animals and 270,768 samples
- Bull birth years range from 1943 to the 2022

Collection use

- Introduce genetic diversity
 - Alleviate inbreeding depression or introducing allelic combinations of interest
- Address genetic improvement goals or corrective mating
- Reestablish breeds/population lost due to disease

Major Question

Can bulls from the collection be used without compromising performance?

Unexpected Results From Holstein Collection Use

Two 1960-70's era bulls were used to reintroduce Y chromosomes missing from today's Holstein

Progeny compared to Penn State Herd and commercial herds

Trait	Old	Modern	
Genomic PTA Milk	-785	321	
Genomic NM\$	-176	236	
Lifetime milk lbs	82,147	62,866	
	Modern	Pilot F1	Cuthbert F1
Ave total length Kb	435,334	84,553	99,543
% homozygosity base pairs	17%	3%	4%

Case study: Jorgensen

Breeder's goals improve maternal characteristics of herd

Use of historically significant Angus bulls from the USDA National Animal Germplasm Program (NAGP) collection

BY 1997

BY 1958

Objectives

Evaluate the performance of progeny using older sire genetics

Characterize genomic properties of older and contemporary bulls and their progeny

Detect selection signatures

Evaluate more progeny than Holstein study

Pedigree

Pedigree included 88,721 animals with birth years from 1937 to 2023

Pedigree quality was evaluated

Primary focus on data from nucleus herd

Clustering Analysis

Pedigree relationships used Wards minimum variance clustering method was used. Six clusters identified using pseudo-t test.

Suggests genetic variability among breeding program within the herd

Phenotypic and genomic data available

Number of phenotypes of progeny out of ≥2016 dams

Bulls	Birth Weight	Weaning Weight	Yearling Weight
Older	214	137	18
Recent	4791	3144	1181

Genomic data included 40,647 SNP markers on 28,916 individuals. Birth year of genotyped animals ranged from 2010 to 2021

Genetic Trends - AAA Overall Genetic Trend for Growth Traits and AAA EPDs of Old Sires with Modern JLC Progeny

Birth Weight

Weaning Weight

Yearling Weight

Genomic estimated breeding values

Mixed model

Fixed Fffects

- Mean
- Sex
- Dam Heifer/Cow Status
- IVF status
- HYS
- Age (for weaning and yearling traits)

Random Effects

- Animal
- Maternal

GEBVs were estimated using genomic data and single-step GBLUP as implemented in BLUPF90

Adjusted phenotypes were corrected for all fixed effects in predictf90

Genetic Trends for JLC Bulls over time

Weaning Weight

Birth Weight

Yearling Weight

Adjusted body weights based upon difference in the sire and dam's age

Birth Weight

Weaning Weight

Yearling Weight

Analyzing Inbreeding

Inbreeding and Heterozygosity

Pedigree inbreeding

Trait	Recent bulls Pedigree	' progeny Genomic	Older bulls' proge Pedigree	ny Genomic
BWT, lbs	-2.75 (4.41)	0.0057 (0.01)	25.55 (72.16)	0.59 (0.32)
WWT, lbs	-20.54 (31.70)	-1.06(0.15)***	41.18 (36.10)	8.02 (2.31)**
YWT, lbs	-54.72 (84.70)	-1.55 (0.46)***	107.4 (87.30)	30.25(7.08)*

Genomic heterozygosity

Trait	Recent bulls' progeny	Older bulls' progeny
BWT, lbs	0.09 (0.06)	-18.9(0.83)*
WWT, lbs	2.98 (0.54)***	-21.20(5.98)**
YWT, lbs	7.4(1.64)***	-72.63(18.80)***

* *P* < 0.05; ** *P* < 0.01; *** *P* < 0.001

Runs of Homozygosity

Runs of homozygosity (ROH)

Obtaining Runs of Homozygosity

Used PLINK to obtain ROH

- Scanning window parameters
 - Window size = 1Mbp
 - Window heterozygous SNP = 2
 - Window missing SNP = 1

ROH parameters

- Density = 1 SNP/200kbp
- Maximum gap of 1 Mbp between SNP in ROH
- Minimum ROH size = 1 Mbp and 15 SNP
- ROH heterozygous SNP = 2

ROH summary statistics

Parameter	Mean	Median	Standard deviation	Minimum	Maximum
Number of ROH	258	252	51.09	101	592
Average ROH length	1.88	1.95	0.16	1.44	2.79
Average combined ROH length	486.65	476.46	116.34	160.52	1584.02

Runs of Homozygosity

For every marker we calculated the proportion of animals that have an ROH.

 Significance threshold is based on the 1st percentile of homozygosity on the marker (excluding chromosome 20).

Runs of Homozygosity

Old Bulls

Enrichment of QTL regions in chr 20 and 21

Top 5 enriched trait-chromosome

Trait	QTL Type	LogP	
Age at puberty (21)	Reproduction	5.27	
Average daily gain (21)	Production	1.37	
Maturity rate (21)	Reproduction	2.10	
Sexual precocity (21)	Reproduction	2.97	
Shear force (21)	Meat	15.11	

Top 5 enriched traits

Trait	QTL Type	LogP
Age at puberty	Reproduction	9.19
Maturity rate	Production	3.13
Sexual precocity	Reproduction	4.10
Shear force	Meat	11.09

Top enriched type

QTL Type	LogP
Meat and Carcass	3.80
Reproduction	1.99

Shared runs of homozygosity regions

F_{ST} Analysis

Global estimate between older and recent bulls offspring = 0.03

Enrichment of QTL regions

Top 5 enriched trait-chromosome

Trait	QTL Type	QTL Ratio
Milk fat % (20)	Milk	0.42
Milk glycosylated kappa-casein percentage (15)	Milk	0.94
Milk linoleic acid content (15)	Milk	1.00
Meat color (14)	Meat and carcass	1.00
Milk yield (20)	Milk	0.32

Final remarks

Selection works

• The additive model is not perfect

Performance of progeny was not negatively impacted – opens new opportunities in selection programs

Use of older genetics beneficial

- Corrective mating
- Injecting genetic diversity
- Alleviate inbreeding depression

NAGP collection is a valuable resource for breeders

Acknowledgments

Jorgensen Land & Cattle

David Thomas

Chad Dechow

Collaborators

Agricultural Research Service

PennState Department of Animal Science

Questions

Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable. USDA is an equal opportunity provider and employer