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1 Introduction   
 In the recent past, animal genomic data was the disruptive technology that faced animal 

breeding. New methodologies had to be developed to incorporate the valuable information 

genomics could provide. Now, following the improvement in sequencing technology, the 

microbiome is echoing that same trajectory. The microbiome is the collection of microorganisms 

that live in or on an animal. While the term microbiome can be used to refer to all the bacteria, 

archaea, protists, and fungi that live symbiotically with an animal, it can also be used in a site-

specific manner, i.e., the rumen microbiome. The microbiome has been shown to be associated 

with traits important to livestock production from body weight and gain to health and fertility 

(Wang et al., 2023; Aliakbari et al., 2022; Ramayo-Caldas et al., 2021; and Sanglard et al., 2019, 

respectively). Various forces drive the composition of the microbiome, but the one most relevant 

to animal breeders is the host genetic factor (Ryu and Davenport, 2022). Thus, microbiomic 

information can be useful to animal breeders in a multitude of ways. First and foremost, 

microbiome data offers a wealth of new phenotypes available for genetic selection. Consider, for 

example, that the cattle genome contains roughly 22,000 genes (The Bovine Genome Sequencing 

and Analysis Consortium et al., 2009) compared to the 13.8 million unique prokaryotic genes 

found in the bovine rumen microbiome (Li et al., 2020). By selecting for or against certain 

microbial populations, breeders could improve animal health and production while also lowering 

the animal’s carbon footprint. As a corollary, microbial traits could be utilized in a multi-trait 

model to improve the breeding value estimation of harder to measure traits, such as methane 

production. Secondly, microbiomic information could be included in a selection index to parse 

out and optimize selection on changes in metabolic pathways in the animal versus beneficial 

changes resulting from the host’s effect on the microbiome. Lastly, information from the 

microbiome can be used in concert with genomic information to improve both genetic and 

phenotypic predictions of animals for economically important traits. 

2 Review of Literature 

2.1 Review of Microbiome Data 

Like genomic data, microbiomic data can be generated in a number of ways. The two most 

common methods are targeted sequencing and whole metagenome shotgun (WMS) sequencing. 
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In targeted sequencing, a specific region of DNA is targeted with a primer, amplified, and 

sequenced. The 16S ribosomal ribonucleic acid (16S rRNA) gene is the most common target 

gene (Pace et al., 1986). The properties of this gene allow for straightforward clustering and, if 

available, taxonomical identification. The primary benefits of targeted sequencing are the 

relatively low cost, established bioinformatics pipelines, and large databases for reference 

(Ranjan et al., 2016). Nonetheless, the drawbacks to amplicon sequencing are worth considering. 

Analyses using 16S rRNA are very limited. Only prokaryotic DNA is sequenced, and then only 

the presence and relative abundance of the taxa is documented. No functional genes can be 

directly measured.  

In direct opposition to targeted gene sequencing is whole metagenome shotgun sequencing. 

In general, the data generation process between the two methods is similar. The key difference is 

that no specific gene is amplified for sequencing (Quince et al., 2017). In other words, rather 

than amplifying a specific gene, WMS sequencing attempts to sequence all the DNA in a sample. 

The WMS sequencing method generates a lot of data, up to 1.5 Tb per run (Quince et al., 2017). 

This improves species detection compared to target gene methodologies and provides 

information about the abundance of microbial genes (Ranjan et al., 2015; Ranjan et al., 2016); 

however, it is very computationally demanding. In addition, WMS sequencing is not constrained 

to prokaryotic organism detection, although this can be a double-edged sword. While WMS 

sequencing can be used to gather information about eukaryotic microbes, it also requires that 

contamination (sequence reads from other sources other than the microbiome, i.e., human, 

bovine, etc.) to be accounted for in the resulting data (Quince et al., 2017). Lastly, the largest 

logistical restraint on WMS sequencing is the price compared to targeted sequencing (Quince et 

al., 2017). 

Both sequencing methods, targeted and WMS sequencing, will result in data that can be 

used in various ways by animal breeders. However, slightly more preparatory work needs to be 

conducted before microbiomic data can be used to its full potential. The data generated are 

sequence reads and not every animal is sequenced to the same depth. Thus, the reads are 

standardized, usually by taking the relative abundance, which is the ratio of counts of a microbial 

feature to the total read count for that sample (Tsilimigras and Fodor, 2016). Further, those 
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relative abundances are often transformed (e.g., log10) so each feature approximates a normal 

distribution over the population and the assumptions of classical statistical tests remains intact. 

In conclusion, there are many forms microbiomic data can take. Targeted gene sequencing 

allows a snapshot of the prokaryotic life in a microbiome, while a more extensive portrait can be 

garnered from whole metagenomic sequencing. Like genomics, microbiomics has sparked a vast 

array of new methods to analyze the information available. In general, though, the log10 

transformed relative abundance of a microbial feature is often the phenotype used in conjunction 

with genomic data. This relatively simple adjustment to the raw data allows for direct 

comparison between samples with more common statistical tools for ease of analysis. 

2.2 Microbiability 

In animal breeding the heritability of a trait is quantified as the ratio of additive genetic 

variance to phenotypic variance. In the same way, the ratio between microbial variance and 

phenotypic variance can be calculated. This value has been coined “microbiability” (m2). 

The idea of microbiability was originally proposed by Difford et al. (2016) but later 

expanded upon by multiple authors (Difford et al., 2018; Camarinha-Silva et al., 2017). An 

illustration of the idea can be seen as the Microbiome model of Figure 1. The estimation of 

microbiability is almost identical to any method of estimating heritability using single nucleotide 

polymorphism (SNP) data. The difference being instead of SNP counts, microbial information is 

used. For example, a microbial relationship matrix (MRM) can be created using normalized 

microbial relative abundances then implemented in a similar fashion as a genomic relationship 

matrix would be used in a mixed model framework (Ross et al., 2013; Camarinha-Silva et al., 

2017). From there, a population parameter of microbiome variance can be estimated. Further, 

instead of an expected breeding value (EBV), this substitution results in estimated microbiomic 

values (EMV). Here the EMV of an animal is the deviation in performance of that animal from 

the population average due to its microbial composition, rather than its genetics (González-Recio 

et al., 2023).  

Microbiability estimates are scarce for beef cattle. Though, there are estimates in other 

species that indicate the microbiome influences a large variety of traits. In dairy cattle, a 

microbiability estimate (standard error) for methane was 0.13 (0.08) (Difford et al., 2018). Zang 
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et al. (2022) created two MRM, one based on data from heritable microbial organisms (h2 

different from 0 at P < 0.05) and another based on non-heritable microbial data. From these the 

authors calculated microbiability estimates for lactation traits using both the heritable and non-

heritable microbiota. The heritable microbiota generally resulted in low microbiability estimates 

ranging from 0.05 to 0.11 (milk fat and milk yield, respectively) while the non-heritable 

microbiota resulted in estimates from 0.20 to 0.39 (energy-corrected milk and milk yield, 

respectively). In sheep, 180-day weight had microbiability estimate of 0.20 (0.06) (Wang et al., 

2023). Comparatively, microbiability of 8-month liveweight were 0.31 (0.13), 0.39 (0.18), and 

0.43 (0.16) for grass-fed lambs, grass-fed adults, and lucerne-fed lambs, respectively (Hess et al., 

2023). The rough concordance of the microbiability estimates between the two papers is 

interesting, especially considering the studies used different populations and different sequencing 

techniques. One of the most popular MRM creation method comes from Camarinha-Silva et al. 

(2017). These authors also reported the first microbiability of production traits in livestock, 

focusing on swine. The estimates for average daily gain, feed conversion, and feed intake based 

on 207 Pietrain sows were 0.28 (0.13), 0.21 (0.14), and 0.16 (0.10), respectively. In Large White 

pigs, the microbiability for the same production traits was lower according to Aliakbari et al. 

(2022). Here the estimate for average daily gain was 0.05 (0.05), feed conversion was 0.22 

(0.11), and feed intake was 0.06 (0.06). The authors additionally provided estimates of the 

microbiability of residual feed intake at 0.12 (0.09) and backfat at 0.11 (0.06). Interestingly, the 

impact of the gut microbiome is not limited to methane and feed-related production traits. 

Ramayo-Caldas et al. (2021) reported the microbiability for IgM, IgG, and 19 other indicators of 

immunocompetence was at least 0.15 and up to 0.28 in swine. Lastly, the MRM need not be 

limited to gut microbiomes. The vaginal microbiome can also be sampled for its microbiota and 

the same methods for estimating microbiability can be applied. Though, at least in relation to 

farrowing performance the impact is extremely low (m2 <0.01)for most traits (Sanglard et al., 

2019). 

 Unlike heritability, estimates of microbiability can change given the microbiome of an 

animal is dynamic. While the microbiome may be resilient and have its own sort of inertia 

(Weimer, 2015), we know it fluctuates over the course of an animal’s life (Jami et al., 2013), over 

the course of a day (Shaani et al., 2018), and especially with diet (Calsamiglia et al., 2008). Thus, 

any microbiome sample is a snapshot of that microbiome at that time and any microbiability 
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estimate reflects that. Therefore, it holds that microbiability estimates should be higher for traits 

recorded closer in time to when the microbiome was sampled. This is supported by Wang et al. 

(2023) who reported the microbiability, derived using data from a sample taken at 180-days-old, 

was nonsignificant for birthweight, and then roughly 0.20 for bodyweight taken every 20 days 

from 100 days of age to 180 days of age. Secondly, though the methodology to create an MRM 

developed by Camarinha-Silva et al. (2017) is the most common in literature, it is certainly not 

the only option available. Different methods of creating the MRM can lead to drastically 

different estimates of microbiability. Saborío-Monero et al. (2021) used simulated data to set 

microbiability to 0.30 and created 12 different MRM, each using a different method that is 

commonly used to create a (dis)similarity matrix. The estimates from each of these matrices 

ranged from 0.27 to 0.97. Additionally, Hess et al. (2020) showed that microbiability estimates 

differ with type of sequencing information used, even if the population, trait, and modelling 

procedure remain static. In the same way an animal can have both a mitochondrial and nuclear 

genome, an animal can have several different microbiomes in and on its body (e.g., rumen, 

ocular, nasal, skin, etc.). Though no study has compared the microbiability estimates of the same 

trait from different microbiomes on the same animal, it is still a source of variability between 

estimates. Finally, we know that the host’s genetics influence their microbiome’s composition. 

One could postulate that if host genetics were fit in a model alongside microbial information, 

microbiability estimates would decrease. Interestingly, this does not seem to be the case as 

microbiability estimates for production traits in swine and liveweight in sheep only see a very 

small decrease (Aliakbari et al., 2022; Wang et al., 2023). 

2.3 Microbiota as Selection Criteria 

The log-transformed relative abundance of a microbial feature (or suite of features) can be 

used as selection criterion in order to aid genetic progress of economically important traits. This 

tactic is known as a microbiome-driven breeding strategy. For a microbiome-driven breeding 

strategy to be successful, the microbial trait must be present in much of the population (i.e., part 

of the core microbiome), be phenotypically variable, be heritable, and be genetically correlated 

with the trait of interest (González-Recio et al., 2023). See the Indirect model in Figure 1 for a 

visual representation of a microbiome-driven breeding value. 
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 Of the various microbiomes in and on beef cattle and other ruminants, the most studied 

and a likely place to find microbial traits that meet the criteria for a microbiome-driven breeding 

strategy is the rumen. The rumen is home to an almost incalculable number of interacting 

microbiota and supplies the ruminant with up to 70% of the animal’s protein and energy needs 

(Flint, 2005). Various rumen microbial features have been shown to be heritable in dairy cattle 

with estimates from 0.08 to greater than 0.7 (Sasson et al., 2017: Wallace et al., 2019; Saborío-

Monero et al., 2020), in beef cattle with an estimate range of 0.06 to 0.82 (Abbas et al., 2020; Li 

et al., 2019), and in sheep with the heritability of genus-level abundances ranging from 0.05 to 

0.34 (Hess et al., 2023). While operational taxonomic unit (OTU) or genus-level abundances 

were the most common trait analyzed in these studies, Martínez-Álvaro et al. (2022) showed 

microbial gene abundances from the rumen of beef cattle were also heritable (0.21 - 0.61). Thus, 

a variety of microbial feature abundances have achieved three of the four criteria to be 

considered as selection candidates. The filtering protocols of these studies restricted the features 

to those with high presence across the population. On average, only features present in at least 

28.59% of samples were analyzed; however, prevalence ranged from 1% (Abbas et al., 2020) to 

70% (Saborío-Monero et al., 2020). These features have non-zero heritability estimates, which 

also implies phenotypic variance across the population. The last item to consider is the genetic 

correlation of these features to economically important traits.  

Unfortunately, there is limited information on correlations between microbial features 

and the other traits in beef cattle. Some research, such as that done by Li et al. (2019), indicates 

some SNP are associated with both microbial features and an economically important trait like 

feed efficiency, but fail to report any correlations. Martínez-Álvaro et al. (2022) is one of the few 

who reported correlations. Here, the authors found that additive log ratio of 29 microbial genera 

and that of 115 microbial genes were genetically correlated with methane production (P < 0.05). 

Those correlations ranged from -0.90 to 0.85. Moreover, using the equation for correlated 

response revealed the response to selection on 30 microbial gene abundances with strong genetic 

correlations to methane was estimated to decrease methane production 22%-34% more 

effectively than direct selection on methane production, depending on selection intensity. This 

represents a unique case where indirect selection is more efficient, and practically the trade-offs 

in costs of data collection and thus data density would also need to be considered.  
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Other animals may provide additional insight in how microbes might be used as selection 

criteria. Saborío-Montero et al. (2019) reported genetic correlations between the composition of 

microbial genera and methane production to range from -0.76 to 0.65 in dairy cattle. Moreover, 

the authors were able to identify a suite of seven genera whose relative abundance showed 

moderate heritability estimates (0.28 - 0.32) as well as positive genetic correlations with methane 

production (0.43 - 0.56). While not ruminants, genetic correlations have been documented 

between the log-transformed relative abundance of 22 fecal genera and feed efficiency, feed 

intake, growth, and backfat in swine (Aliakbari et al., 2021). Likewise, genetic correlations were 

found between a variety of fecal OTU and the average daily gain of rabbits (Mora et al., 2022).  

In short, these authors have identified candidates to build a microbiome-driven breeding 

strategy to reduce methane emissions, increase production, or improve efficiency. The 

implications of this are two-fold. Firstly, selection of microbiome traits can indirectly improve 

hard to measure traits like methane production. Secondly, adding microbiome traits into a 

multivariate model, even if not chosen as selection criteria, will improve breeding value 

estimation of the trait of interest if data are available before the trait of interest can be observed. 

2.4 Microbiome Traits in a Selection Index 

The fact that aspects of an animal’s microbiome can influence its phenotype and that an 

animal’s genotype can influence aspects of its microbiome has been established in the scientific 

literature, and this body of evidence continues to grow. Moreover, it is very well established that 

an animal’s genotype influences its phenotype. Consequently, the challenge becomes how to best 

untangle all these effects from each other and use the information available for selection most 

effectively. Several authors have proposed using a recursive structural equation model as one 

potential solution (Saborío-Monero et al., 2020; Christensen et al., 2021; Tiezzi et al., 2021). 

This approach would account for the covariance between the host genetic influence directly on 

the phenotype of interest and the genetic influence mediated by the microbial feature (or indirect 

influence). In other words, this procedure would separate the host genes that affect the phenotype 

directly from the host genes that affect the microbiome which then affect the phenotype 

(Recursive model in Figure 1). Thus, the total breeding value for the phenotype would be the 

direct genetic effect plus the sum of mediated genetic effects (Tiezzi et al., 2021; Christensen et 

al., 2021). 
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 Parsing the genetic influence on a trait in a recursive structure can have benefits. From a 

biological perspective it provides new insight into causality (Valente et al., 2010) and aids in 

identifying novel quantitative trait loci (Tiezzi et al., 2021). From a breeding perspective, these 

two genetic influences can be split and weighted in a selection index based on the breeder’s 

preferences (Weishaar et al., 2019). This could be of extreme value in making desired changes in 

one phenotype and either reduced or null antagonistic changes in another. For example, the 

genetic correlation between the first principal component (PC) of microbial composition and 

methane production in dairy cattle is 0.83 (0.13), while the genetic correlation between that same 

PC and dry matter intake was 0.32 (0.36) (López-Paredes et al., 2021). Compare this to the 

genetic correlation of 0.83 between methane production and feed intake in cattle (Donoghue et 

al., 2016; Manzanilla-Pech et al., 2016). Thus, if one were to select for cattle with lowered 

methane production but wanted to limit the impact of selection on feed intake, a selection index 

heavily favoring the microbiome mediated genetic effect on methane production might 

accomplish that goal. While methane is a good example and one of the very few that have 

reported genetic correlations between the microbiome and other traits, it is by no means the only 

trait that may benefit from this approach. 

2.5 Predicting Phenotypes 

There are many situations in which one might want to predict an animal’s phenotype to 

inform management decisions. As has been established, microbiomic data can be treated 

similarly to genomic data, albeit with slight modifications to account for the differences in data 

format. It has also been established that aspects of the microbiome affect an animal’s phenotype. 

Therefore, it is reasonable to attempt to predict phenotypes using microbiomic data with methods 

adopted from genomics. Outside of the potential benefits of predicting phenotype, fitting 

microbiome data into genetic prediction models has the potential to reduce the residual variation, 

this leading to more accurate genetic prediction models.  

 One of the more popular methods to predict phenotypes using microbiome information is 

to use the MRM in a best linear unbiased prediction (BLUP) context. This method substitutes an 

animal’s genetic effect for the animal’s microbiome effect by defining the relationship between 

animals through an MRM rather than a genetic-based relationship matrix. This idea was first 

presented in Ross et al. (2013). In that work, the microbiome of dairy cattle was used to predict 
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methane production. The authors had access to 5 different populations (N = 7 – 20) with both 

microbiomic and methane data. The experiment was constructed such that one population served 

as the training set for one other population in all pairwise combinations. Accuracy was defined as 

the Pearson correlation between observed and predicted phenotype and ranged from 0 to 0.79. 

These results demonstrate, much like genomic prediction, microbiomic phenotype prediction can 

be predictive, but the accuracy is dependent on the composition of the training and test 

populations. 

Ross et al. (2013) explored phenotype prediction using only microbial information, however, 

other authors explored the differences between predicting phenotypes using genomics and 

microbiomics. The basic framework for these papers was to compare prediction accuracies 

between models with a random animal genetic effect, a random animal microbiome effect, and a 

model with both with no interaction (the additive approach or the Joint model in Figure 1). Wang 

et al. (2015) predicted residual feed intake phenotypes for 28 dairy cattle. The correlation 

between the predicted and observed values using just genomic information for all animals was 

0.33. In a leave-one-out validation, the correlation using just rumen microbiomic data was 0.49 

whereas the correlation was 0.57 when both types of information were included. Aliakbari et al. 

(2022) applied this structure to performance traits in pigs using 20-fold cross-validation. While 

the accuracies of predicted phenotype with adjusted phenotype varied across trait, overall, the 

accuracy of genomic prediction was comparable to or slightly higher than the microbiome 

predictions. However, the combination of the two information sources produced the most 

accurate predictions. Further examples of the greater predictive power of using both genomic and 

microbiomic data can be found in dairy cattle methane production and various lactation traits 

(Qadri et al., 2022) and sheep methane production, liveweight, and fecal egg count (Ross et al., 

2020; Hess et al., 2021; Hess et al., 2023). 

It has been established that the microbiome and host genetics are not totally independent. 

This overlap may account for why there are the accuracy gains from using genomic and 

microbiomic data are not the additive gains one might expect from two separate sets of 

predictors. Methods have been developed on how to account for this interaction. Saborío-Monero 

et al. (2021) utilized a linear model in a BLUP framework which included the animal genetic 

effect, the animal microbiome effect, and the interaction between the two where the (co)variance 
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matrix was defined as the Hadamard product between the GRM and the MRM. The correlation 

between the solutions for the interaction effect, what the authors termed estimated genetic × 

microbiome interaction value (EGMV), and methane production in dairy cattle was 0.97. This 

outperformed models where EBV was the only solution (a standard GBLUP) which had accuracy 

of 0.9. The interaction solution also had better prediction than the EBV and EMV solutions from 

an additive model when the latter solutions were estimated together, but used to predict 

independently (accuracy of 0.86 and 0.81, respectively)  

In another study, Qadri et al. (2022) compared models that used genomics only, 

microbiomics only, the additive approach, and two interaction models. One interaction model 

contained a Hadamard product and the other defined the interaction using a matrix derived from 

the Cholesky decomposition of the MRM and GRM known as CORE-GREML (Zhou et al., 

2020). When predicting a suite of lactation and methane emission traits in Holsteins, the 

Hadamard interaction model always resulted in the greatest prediction accuracies. The extent this 

was the case depended on the trait in question. The models were then used to predict daily gain, 

feed intake, and feed conversion of the 207 pigs from Camarinha-Silva et al. (2017). For those 

traits, the Hadamard product model was the most accurate for feed conversion, competitive for 

daily gain and feed intake (slightly behind the additive model and microbiomic model, 

respectively). 

There are methods other than the BLUP approach to predict phenotypes using microbiomic 

information. For example, Maltecca et al. (2019) contrasted the performance of models including 

Bayesian Lasso, random forest, gradient boosting, and semi-parametric kernel (Reproducing 

Kernel Hilbert space). The data utilized were microbiome samples from three timepoints (18 

days of age, 118 days of age, and 196 days of age). Phenotypes compromised of loin depth, loin 

eye area, backfat thickness, weight taken roughly 110 days of age, 196 days of age, and at finish. 

Lastly, ADG was measured from birth to 110 days of age, 110 to 196 days of age, and 110 days 

of age to finish. Each phenotype/timepoint was subjected to a stratifed 5-fold cross-validation 

with a 30% test set for each model. In general, sampling time played a critical role in 

determining prediction accuracy over a fixed effects model (the Null model in Figure 1). 

Microbiome data showed the greatest prediction improvement when the sample was taken closer 

to the recording of the phenotype. There was no clear winner between the models. All of the 
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models showed improvement over a fixed effect model for at least some phenotype/timepoint. 

The Reproducing Hilbert Kernel space model was the most consistent across 

phenotype/timepoint. 

 Regardless of the models used, microbiomic data can be useful for phenotypic prediction. 

Moreover, when used in concert with genomic information, either in an additive fashion and 

especially as an interaction, the prediction accuracy is greater than either information source 

alone. It is worth noting that while the genotypes of an animal will remain static throughout an 

animal’s life, the same cannot be said of microbiomic features and their relative abundances. 

Those are most useful when taken close in time to the measurement of the phenotype of interest. 

Nonetheless, the optimal timing of microbiome sampling and the limits of early sampling require 

additional research. 

3 Conclusions and Implications to Genetic Improvement of Beef Cattle 
Microbiome data is a useful source of information whose full potential is only now becoming 

uncovered. It is being generated more commonly in research settings and more cheaply for all 

livestock species. The microbiome itself can provide useful insights into an animal’s health and 

well-being in addition to being altered to optimize efficiency. Its use in animal breeding is multi-

faceted, and several approaches have been proposed to make use of these data in 

genetic/phenotypic prediction models.   

Microbial features can be used as phenotypes themselves. By directly selecting individual 

microbial features related to economically important traits, breeders have a new avenue with 

which to make improvements. For some economically important traits, selection on a suite of 

microbial features may result in more response to selection than direct selection. 

Microbial features can be added in multivariate models as a correlated trait to increase EBV 

accuracy. Alternatively, a recursive model can be used to separate the direct and mediated 

influence of animal’s genetics. By placing different selection emphasis on these partitions, 

breeders could make genetic gain in a trait while mitigating antagonistic changes in other traits.  

The combination of genomic and microbiomic data often results in more accurate phenotypic 

predictions than either source alone. Modeling the interaction between the two is proving to be 
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even more effective. As our knowledge about the functional role of specific genomic loci and 

microbial features grows, new models may emerge that take advantage of that information. 

 Most information about the microbiome’s relationship with the host comes from dairy 

cattle, swine, and sheep. There is a great opportunity for exploration in this space for beef cattle 

researchers. The genetic correlation between microbial features and economically important 

traits, the best way to model microbial data for genetic/phenotypic prediction, and even 

something as simple as the microbiability estimates of traits are all scarce in beef cattle. With 

that knowledge in hand, microbiome data opens whole new realm of possibilities to bolster beef 

cattle genetic improvement and management.  
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4 Figures 
Figure 1 – Adapted from Pérez-Enciso et al. (2021) 

 

 

Hypothetical models for how host genetics (G) and microbiome (B) components might affect host 

phenotype (y). 
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