Using Enviromics to Identify More Adapted Angus Cattle

Troy Rowan University of Tennessee BIF Adaptation & Efficiency Breakout June 11, 2024

Animal Performance

Phenotype - Genetics & Environment

Production Reproduction Disease resistance Product quality

Phenomics

Genomics

Enviromics

Climate

Optimization of Genetics, Management and Environment Combination

Genotype x Environment

Genotype x Environment (Plasticity)

Figure 1. Estimated breeding values from BLUP and ssGBLUP for the five best and worst bulls for yearling weight in Nellore cattle over the environment gradients. Adapted from Oliveira *et al.* (2018).

What we haven't done:

- Dense environmental characterization
- Disentangled GxM from GxE
- Multi-trait/multi-variable work

What we have done:

- Single trait/env reaction norms
- Heat stress
- Regional genetics correlations
- Adaptive traits

Figure 2. Manhattan plots for hot carcass weight (HCW) under no heat stress and heat stress. Chromosomes are indicated with different colors.

G x E Analysis

- Visualization Tools and Modeling Approaches
 - Finlay–Wilkinson, AMMI, GGE biplot
 - Interaction term (P = G + E + GxE + e)
 - Multi-trait models
 - Reaction norms

Enviromics in Breeding

Resende, R. T., Piepho, H.-P., Rosa, G. J. M., Silva-Junior, O. B., Silva, F. F., Resende, M. D. V and Grattapaglia, D. Enviromics in breeding: applications and perspectives on envirotypic-assisted selection. *Theoretical and Applied Genetics* 134: 95–112, 2021.

USDA Integrating Enviromics, Genomics, and Machine Learning for Precision Breeding of Resilient Beef Cattle (USDA AFRI 2023-68014-39816)

What does a zip code miss?

Research-Extension Integrated Objectives:

- Generation of data lake and data processing pipelines for comprehensive environmental characterization of US beef cattle production systems.
- 2. Comprehensive evaluation of genotype-byenvironment interactions and future performance through an enviromics approach.

3. Definition of novel indicators of animal resilience through in-depth phenotyping of genetically divergent animals.

Overall Project Structure

How do you understand management? Ask about it!

<u>Developing a survey to refine intensity of management:</u>

- Forage and Grazing Management
- Health
- Reproduction
- Business Decisions
- Technology adaptation
- Genetic Decision-Making
- Demographics

How will we model GxE(xM)?

Regional GxE(xM) genetic correlations

Multi-Dimensional Reaction Norms

Geographically Weighted Regression (GWR)

Ensemble of Machine Learning approaches

Thanks for Listening!

<u>Angus Producers:</u> Stay tuned for communication about survey rolling out in July/August!

Reach out with questions and ideas! <u>trowan@utk.edu</u> (712) 427-0096

> Guilherme Rosa (Project PI) grosa@wisc.edu

