Terminal Crossbreeding: A Missed Opportunity for the Beef Industry

R. Mark Thallman U.S. Meat Animal Research Center Clay Center, NE

Main Take-Home Message

• If the genetic potential for growth is the same in commercial cows as it is in the bulls they are bred to, some profit potential is probably left on the table.

Overview

- Terminal crossbreeding systems
- Practicality of raising replacement heifers in onebull herds
- Need for producers to specialize in producing young bred cows with maternal genetics
 - How to make such a system sustainable and profitable
 - Genetic characteristics of such a population
- Obstacles to implementation
- Advantages to the entire beef industry
- Breeding Maternal Cattle

Terminal Crossbreeding Systems

- Breeding cows strong in maternal traits to bulls that are strong for terminal traits
- Was used extensively in the 1970s when exotic continental European breed bulls were commonly bred to British breed cows
 - Calving difficulty can be a challenge
 - Producing a sufficient number of replacements can be a challenge

The Traditional Replacement Rate Challenge

- Almost all cows in system are maternal
- About half of cows in the system need to be bred to maternal bulls to produce enough replacements to maintain a population of maternal cows
- This means only about half of steers and 2/3 of fed cattle are sired by terminal bulls
 - The remainder are straight maternal steers of substantially less value

Terminal Sire Breeding Goals

- Early growth rate
- Calving ease as trait of the calf
- Feed efficiency
- Meat quality
- Carcass composition
- Disease resistance
- Calf survival and vigor
- Male fertility

Maternal Breeding Goals

- Female fertility
- Maternal calving ease
- Low maintenance requirements (small size)
- Longevity
- Milk production (but is more better?)
- Disease resistance
- Temperament
- Maternal instinct
- Adapted to the production environment

Fundamental Principles of Animal Breeding

- Focus on fewer traits allows faster progress
 per The pork and poultry industries
- Mo are not leaving this opportunity and on the table.
- Terminal crossbreeding is much easier with higher female fecundity

Practicality of Raising Replacement Heifers in One-Bull Herds

• Generally not enough replacements in one year to be practical to manage as a separate group.

• Not a very efficient use of time to be night calving 3-5 heifers.

"Cow as an Entertainment Center"

Practicality of Raising Replacement Heifers in One-Bull Herds

- Nonetheless, these herds produce a substantial fraction of the calves in the beef industry and that seems unlikely to change.
- These herds would be more productive, profitable, and enjoyable for their owners if they purchased replacement females that were bred for their 2nd or later calf and sold their entire calf crops to be fed for harvest.
- Ideally, the bulls would be selected for terminal traits and the cows for maternal traits.

Practicality of Raising Replacement Heifers in One-Bull Herds

- The advantages of changing to this structure are not limited to one-bull herds.
- The educational, cultural, and marketing challenges to getting this approach adopted should not be underestimated.
- Furthermore, the current lack of a substantial supply of maternal-oriented young bred cows in the marketplace would make it very challenging to try to convince conventional all-purpose producers to specialize in terminal calf production.

Producers of Young Bred Cowswith Maternal Genetics

- There is a need for specialized producers of these
- Would probably tend to be larger than average producers, but not necessarily.
- Large ranches could have both maternal and terminal herds in the same operation.
- The ideal product would be young maternal cows bred to terminal bulls to have their 2nd calf.
 - A more realistic product is maternal cows bred to terminal bulls to have their 3rd or 4th calf.

Producing Young Bred Cows: Turnover and Age at Sale

- On average, each cow needs to produce a heifer to replace her in order to maintain herd size.
 - Sex ratio, pregnancy, and culling rates determine age at sale.
 - If growing the herd, cows will need to be sold at an even older age.
 - Beyond bred heifers, the younger the cows can be sold, the more productive (and probably more profitable) the enterprise will be.
 - In general, about 2-3 calves would be required to replace a cow, so they could be sold bred for their 3rd or 4th calves as coming five-year-olds.

Producing Young Bred Cows: Turnover and Age at Sale

- For her last breeding in the maternal producer's herd, the cow should ideally be bred to a terminal sire to better match the calves in the herd she would be sold into.
 - It could be challenging to determine how many will be sold each year depending on number of incoming replacements, weather, forage availability and forage conditions
- Altering the sex ratio could be very helpful in reducing age at sale of females and enhancing the average value of calves produced in this type of program.

Lessons from the Dairy Industry

- It was only a few decades ago that the dairy industry faced a replacement rate crisis
- It was solved by:
 - Genetic evaluation of fertility
 - Use of sexed semen
- Sexed semen is fundamentally responsible for the beef-on-dairy phenomenon

Sexed Semen

• Sexed semen is rapidly becoming a feasible technology that should be a game-changer for consideration of terminal crossbreeding

Uses of Sexed Semenin Terminal Crossbreeding

- Perhaps use sexed (female) semen during the first estrus cycle of the breeding season and then switch to natural service or unsexed semen.
- Another strategy could be to use sexed semen more heavily in heifers (in which it is probably more effective) and less heavily in breeding for the 2nd calf.
- This could likely reduce the predominant age at sale to bred for 3rd calves as coming four-year-olds.

Producing Young Bred Cows: Sex Ratio

- Altering sex ratio would also:
 - Reduce the incidence of calving difficulty (by reducing the number of heavier bull calves),
 especially at the start of the calving season when calves are coming at the fastest pace.
 - Reduce the number of maternal line steers that need to be marketed, likely at a discount and lower weight.

Marketing Young Bred Cows: Sex Ratio

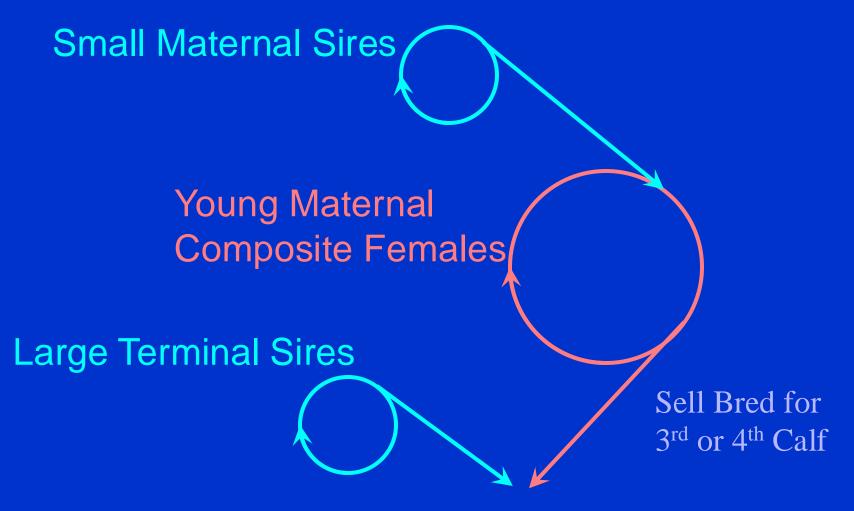
- It might be profitable to breed cows designated for sale with male-sexed terminal semen, but would need to capture added value from improved sex ratio
 - Best if early ultrasound pregnancy detection could be used to identify AI-sired calves and/or determine sex of calves
 - A lower cost strategy could be to sell based on a guaranteed sex ratio and pay a rebate if not realized.

Selection for Maternal Traits

- Genetic improvement for maternal traits should primarily come from bull selection
- It would benefit greatly from better maternal trait EPDs based on data from all parities.

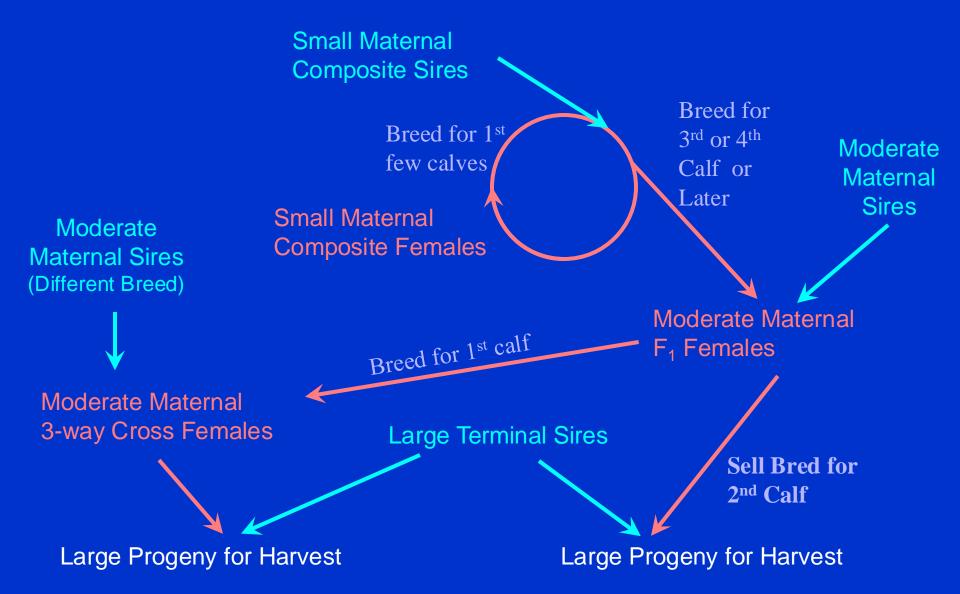
Selection for Maternal Traits

- Culling should be minimal and based almost solely on immediate effect on profitability.
- Don't cull commercial cows in the hope of improving genetics of the herd (applies to seedstock herds as well).
 - Attempting to use culling to achieve genetic progress would make the system unsustainable.
 - But, keeping daughters of the best cows for use in nucleus herds would be beneficial.

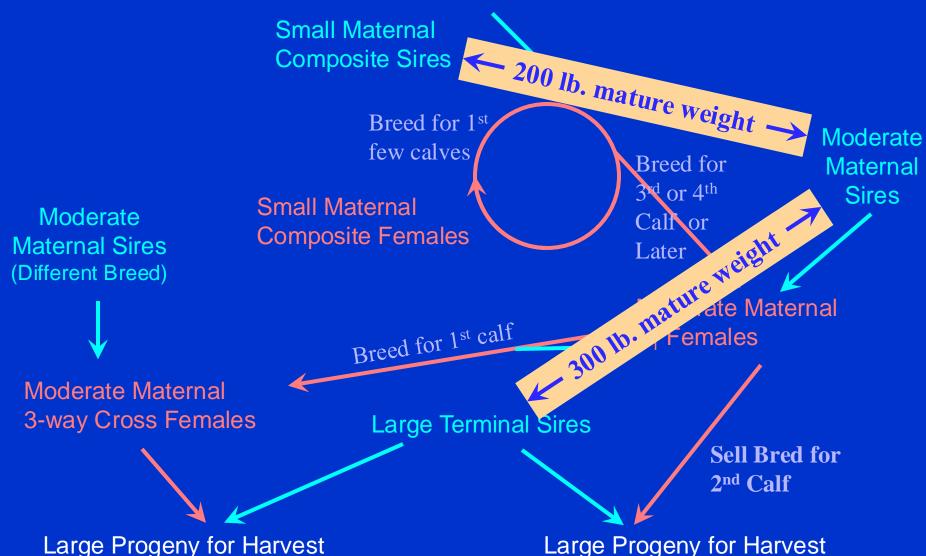

Length of Breeding Season

- Short breeding seasons:
- Reduce pregnancy rate
- Increase replacement rate
- Are reasonable if justified by immediate profitability
- Are not justified by the idea that they will improve breeding value for fertility

Mating Systems for Terminal Crossbreeding


- Probably simplest for maternal females to be a composite, but other crossbreeding systems would also work.
- But we should not miss the opportunity to take advantage of heterosis in the primary cow herds that produce commercial calves for the beef industry

Maternal Composite Cows



Progeny for Harvest

System with F₁ Cows for Near-Maximum Heterosis

System with F₁ Cows for Near-Optimum Complementarity

Size Disparity Between Cows and Bulls

- This is the essence of complementarity as Tom Cartwright use the term.
- It is the greatest opportunity to improve efficiency of cow-calf production
- The primary constant is dystocia
- It can be mitigated by breeding to maternal sires (female semen) in early parities and to terminal sites (male semen) in later parities

Obstacles to Implementation

- Tradition
- Difficult to establish a market for maternal females until a group of dedicated terminal producers develops
 - Would take years to breed cattle best suited for this purpose
 - Difficult to convince all-purpose producers to terminal production until a reliable supply of maternal line cows develops
- Need to balance growth with calving ease

 USDA Agricultural Research Service

 U.S. DEPARTMENT OF AGRICULTURE

Advantages to the Beef Industry

- Natural efficiency of heavier calves and carcasses from smaller cows (terminal producers)
- Less calving difficulty in heifers (maternal producers)
- More uniform stream of calves with better carcass characteristics going into feedlots
- Smaller producers can focus on doing one thing well

Effect of Cow Size on Efficiency and Profitability

- Smaller cows may or may not be inherently more efficient, but they are almost certainly more profitable if they can be bred to bulls of greater genetic potential for growth
- Maternal breeds should generally be selected for lower mature size and maternal calving ease
- Terminal breeds should generally be selected for greater early growth and greater calving ease

What Size Cows are Most Efficient?

- I don't think we really have a good answer
- Perhaps larger cows where nutrients are abundant and smaller where they are sparse.
- It's really hard to measure.
- There are numerical artifacts that can mislead people into thinking small cows are more efficient than they really are.
- We would need to know how much cows of various sizes eat to answer it adequately

Beef Breeds Have Become Far Too Similar

- Breeds that used to have some of the smallest cows now have the biggest cows
- Selection objectives vary only minimally among beef breeds
- Almost all beef breeds have general purpose breeding objectives
- This presents a challenge for the industry moving to a more efficient mating system.

Conclusions

- Smaller cows may or may not be inherently more efficient, but they are almost certainly more profitable if they can be bred to bulls of greater genetic potential for growth
- Maternal breeds should generally be selected for lower mature size and maternal calving ease
- Terminal breeds should generally be selected for greater growth and greater calving ease

Conclusions

- Most breeds need to decide whether they are a maternal or terminal breed.
- The notion that beef breeds should be allpurpose is pervasive, but counterproductive
- Beef breeds have become far too similar in mature size and most other characteristics
- Heterosis is important and underutilized, but it is not a "free lunch"
 - Greater production comes at the partial expense of higher inputs

Conclusions

- Complementarity and terminal crossbreeding systems are underutilized
- A change in industry structure with regard to replacement females could benefit the entire industry
 - Specialized production of young replacement females with maternal genetics
- An economically feasible sexed semen technology could make terminal crossbreeding much more practical

For More Information:

Contact:

Mark Thallman 402-762-4261 Mark.Thallman@usda.gov

Larry Kuehn 402-762-4352 Larry.Kuehn@usda.gov

Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable. USDA is an equal opportunity provider and employer.

